Takens's theorem

Last updated
Rossler attractor reconstructed by Taken's theorem, using different delay lengths. Orbits around the attractor have a period between 5.2 to 6.2. Rossler attractor reconstructed by Taken's theorem, using different delay lengths..gif
Rössler attractor reconstructed by Taken's theorem, using different delay lengths. Orbits around the attractor have a period between 5.2 to 6.2.

In the study of dynamical systems, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of that system. The reconstruction preserves the properties of the dynamical system that do not change under smooth coordinate changes (i.e., diffeomorphisms), but it does not preserve the geometric shape of structures in phase space.

Contents

Takens' theorem is the 1981 delay embedding theorem of Floris Takens. It provides the conditions under which a smooth attractor can be reconstructed from the observations made with a generic function. Later results replaced the smooth attractor with a set of arbitrary box counting dimension and the class of generic functions with other classes of functions.

It is the most commonly used method for attractor reconstruction. [1]

Delay embedding theorems are simpler to state for discrete-time dynamical systems. The state space of the dynamical system is a ν-dimensional manifold M. The dynamics is given by a smooth map

Assume that the dynamics f has a strange attractor with box counting dimension dA. Using ideas from Whitney's embedding theorem, A can be embedded in k-dimensional Euclidean space with

That is, there is a diffeomorphism φ that maps A into such that the derivative of φ has full rank.

A delay embedding theorem uses an observation function to construct the embedding function. An observation function must be twice-differentiable and associate a real number to any point of the attractor A. It must also be typical, so its derivative is of full rank and has no special symmetries in its components. The delay embedding theorem states that the function

is an embedding of the strange attractor A in

Simplified version

Suppose the -dimensional state vector evolves according to an unknown but continuous and (crucially) deterministic dynamic. Suppose, too, that the one-dimensional observable is a smooth function of , and “coupled” to all the components of . Now at any time we can look not just at the present measurement , but also at observations made at times removed from us by multiples of some lag , etc. If we use lags, we have a -dimensional vector. One might expect that, as the number of lags is increased, the motion in the lagged space will become more and more predictable, and perhaps in the limit would become deterministic. In fact, the dynamics of the lagged vectors become deterministic at a finite dimension; not only that, but the deterministic dynamics are completely equivalent to those of the original state space (precisely, they are related by a smooth, invertible change of coordinates, or diffeomorphism). In fact, the theorem says that determinism appears once you reach dimension , and the minimal embedding dimension is often less. [2] [3]

Choice of delay

Takens' theorem is usually used to reconstruct strange attractors out of experimental data, for which there is contamination by noise. As such, the choice of delay time becomes important. Whereas for data without noise, any choice of delay is valid, for noisy data, the attractor would be destroyed by noise for delays chosen badly.

The optimal delay is typically around one-tenth to one-half the mean orbital period around the attractor. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Chaos theory</span> Field of mathematics and science based on non-linear systems and initial conditions

Chaos theory is an interdisciplinary area of scientific study and branch of mathematics focused on underlying patterns and deterministic laws of dynamical systems that are highly sensitive to initial conditions, and were once thought to have completely random states of disorder and irregularities. Chaos theory states that within the apparent randomness of chaotic complex systems, there are underlying patterns, interconnection, constant feedback loops, repetition, self-similarity, fractals, and self-organization. The butterfly effect, an underlying principle of chaos, describes how a small change in one state of a deterministic nonlinear system can result in large differences in a later state. A metaphor for this behavior is that a butterfly flapping its wings in Texas can cause a tornado in Brazil.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

<span class="mw-page-title-main">Lyapunov exponent</span> The rate of separation of infinitesimally close trajectories

In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by

<span class="mw-page-title-main">Attractor</span> Concept in dynamical systems

In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain close even if slightly disturbed.

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Summary of algorithms for nonlinear dimensionality reduction

Nonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment in time, the times at which the state of a dynamical system returns to the previous state at , i.e., when the phase space trajectory visits roughly the same area in the phase space as at time . In other words, it is a plot of

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

In the mathematics of evolving systems, the concept of a center manifold was originally developed to determine stability of degenerate equilibria. Subsequently, the concept of center manifolds was realised to be fundamental to mathematical modelling.

<span class="mw-page-title-main">Lorenz system</span> System of ordinary differential equations with chaotic solutions

The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system. In popular media the "butterfly effect" stems from the real-world implications of the Lorenz attractor, namely that several different initial chaotic conditions evolve in phase space in a way that never repeats, so all chaos is unpredictable. This underscores that chaotic systems can be completely deterministic and yet still be inherently unpredictable over long periods of time. Because chaos continually increases in systems, we cannot predict the future of systems well. E.g., even the small flap of a butterfly’s wings could set the world on a vastly different trajectory, such as by causing a hurricane. The shape of the Lorenz attractor itself, when plotted in phase space, may also be seen to resemble a butterfly.

In mathematics, in the study of dynamical systems, the Hartman–Grobman theorem or linearisation theorem is a theorem about the local behaviour of dynamical systems in the neighbourhood of a hyperbolic equilibrium point. It asserts that linearisation—a natural simplification of the system—is effective in predicting qualitative patterns of behaviour. The theorem owes its name to Philip Hartman and David M. Grobman.

Recurrence period density entropy (RPDE) is a method, in the fields of dynamical systems, stochastic processes, and time series analysis, for determining the periodicity, or repetitiveness of a signal.

Convergent cross mapping (CCM) is a statistical test for a cause-and-effect relationship between two variables that, like the Granger causality test, seeks to resolve the problem that correlation does not imply causation. While Granger causality is best suited for purely stochastic systems where the influences of the causal variables are separable, CCM is based on the theory of dynamical systems and can be applied to systems where causal variables have synergistic effects. As such, CCM is specifically aimed to identify linkage between variables that can appear uncorrelated with each other.

Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.

In the mathematics of dynamical systems, the concept of Lyapunov dimension was suggested by Kaplan and Yorke for estimating the Hausdorff dimension of attractors. Further the concept has been developed and rigorously justified in a number of papers, and nowadays various different approaches to the definition of Lyapunov dimension are used. Remark that the attractors with noninteger Hausdorff dimension are called strange attractors. Since the direct numerical computation of the Hausdorff dimension of attractors is often a problem of high numerical complexity, estimations via the Lyapunov dimension became widely spread. The Lyapunov dimension was named after the Russian mathematician Aleksandr Lyapunov because of the close connection with the Lyapunov exponents.

<span class="mw-page-title-main">Spectral submanifold</span>

In dynamical systems, a spectral submanifold (SSM) is the unique smoothest invariant manifold serving as the nonlinear extension of a spectral subspace of a linear dynamical system under the addition of nonlinearities. SSM theory provides conditions for when invariant properties of eigenspaces of a linear dynamical system can be extended to a nonlinear system, and therefore motivates the use of SSMs in nonlinear dimensionality reduction.

Empirical dynamic modeling (EDM) is a framework for analysis and prediction of nonlinear dynamical systems. Applications include population dynamics, ecosystem service, medicine, neuroscience, dynamical systems, geophysics, and human-computer interaction. EDM was originally developed by Robert May and George Sugihara. It can be considered a methodology for data modeling, predictive analytics, dynamical system analysis, machine learning and time series analysis.

References

  1. Sauer, Timothy D. (2006-10-24). "Attractor reconstruction". Scholarpedia. 1 (10): 1727. doi: 10.4249/scholarpedia.1727 . ISSN   1941-6016.
  2. Shalizi, Cosma R. (2006). "Methods and Techniques of Complex Systems Science: An Overview". In Deisboeck, ThomasS; Kresh, J.Yasha (eds.). Complex Systems Science in Biomedicine . Topics in Biomedical Engineering International Book Series. Springer US. pp.  33–114. arXiv: nlin/0307015 . doi:10.1007/978-0-387-33532-2_2. ISBN   978-0-387-30241-6. S2CID   11972113.
  3. Barański, Krzysztof; Gutman, Yonatan; Śpiewak, Adam (2020-09-01). "A probabilistic Takens theorem". Nonlinearity. 33 (9): 4940–4966. arXiv: 1811.05959 . doi:10.1088/1361-6544/ab8fb8. ISSN   0951-7715. S2CID   119137065.
  4. Strogatz, Steven (2015). "12.4 Chemical chaos and attractor reconstruction". Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Second ed.). Boulder, CO. ISBN   978-0-8133-4910-7. OCLC   842877119.{{cite book}}: CS1 maint: location missing publisher (link)
  5. Fraser, Andrew M.; Swinney, Harry L. (1986-02-01). "Independent coordinates for strange attractors from mutual information" . Physical Review A. 33 (2): 1134–1140. doi:10.1103/PhysRevA.33.1134. PMID   9896728.

Further reading