Temporal plasticity

Last updated

Temporal plasticity, also known as fine-grained environmental adaptation, [1] is a type of phenotypic plasticity that involves the phenotypic change of organisms in response to changes in the environment over time. Animals can respond to short-term environmental changes with physiological (reversible) and behavioral changes; plants, which are sedentary, respond to short-term environmental changes with both physiological and developmental (non-reversible) changes. [2]

Contents

Temporal plasticity takes place over a time scale of minutes, days, or seasons, and in environments that are both variable and predictable within the lifespan of an individual. Temporal plasticity is considered adaptive if the phenotypic response results in increased fitness. [3]   Non-reversible phenotypic changes can be observed in metameric organisms such as plants that depend on the environmental condition(s) each metamer was developed under. [1] Under some circumstances early exposure to specific stressors can affect how an individual plant is capable of responding to future environmental changes (Metaplasticity). [4]

Reversible plasticity

A reversible change is defined as one that is expressed in response to an environmental stressor but returns to a normal state after the stress is no longer present. [5] Reversible changes are more likely to be adaptive for an organism when the stress driving the change is temporary and the organism is likely to be exposed to it again within its lifetime. [6] Reversible plasticity often involves changes in physiology or behavior. Perennial plants, which often experience recurring stresses in their environment due to lack of mobility, benefit greatly from reversible physiological plasticity such as changes in resource uptake and allocation. [7] When essential nutrients are low, root and leaf resorption rates can increase, persisting at a high rate until there are more nutrients available in the soil and resorption rates can return back to their normal state. [8]

Irreversible plasticity

Irreversible changes are described as changes that remain expressed in an organism after the environmental stress has ceased. [5] Environmental shifts that drive irreversible plasticity in an organism tend to be less rapidly changing, such as gradually increasing temperatures. This often leads to permanent changes in morphology or in the developmental process of an organism (developmental plasticity). [9] Plants are highly plastic and tend to express many irreversible developmental changes, such as shifts in timing of bud and flower development. [10] In animals, many organisms benefit from having multiple persisting morphs in a population that arise during development in response to environmental conditions. For example, freshwater snails will form more spherical shells when in the presence of a predator (bluegill sunfish) and conical shells when predators are absent. [11] These shell shapes are permanent and cannot be reverted, even if the predator status of the snail's environment changes.

Examples

Morphologically and developmentally plastic traits can be reversible in some cases, and there are some physiological responses which can be irreversible, which differs from the typical trend. One example of developmental plasticity that is reversible is the shift in mouth form of roundworm, Pristionchus pacificus, when exposed to a changes in food type and availability. [12] A second example of reversible developmental plasticity is the length of Galapagos marine iguanas, Amblyrhynchus cristatus, in response to El Niño weather conditions. During El Niño seasons, the algal food supply decreases, but increases during La Niña seasons. This change in food availability coincides with the changes in iguana size during the season. [13]

A unique and complex example of plasticity is camouflage, an adaption that allows animals to avoid predators by hiding in plain sight. [14] The mechanisms behind camouflage are not the same in all species - they can be morphological, physiological, behavioral, or even a combination of traits. [15] Camouflage can also be irreversible or reversible, depending on the species. Camouflage can be irreversible when color patterns or other morphological traits are set during development. However, camouflage can also be reversible, with color, texture, and behavioral changes occurring in response to immediate threats (e.g., Mimic octopus).

In some cases, the exact same change in phenotype can be reversible in one species and irreversible in another. For example, both pea and wheat plants express changes in root growth due to environmental cues, but the changes are permanent only for wheat. [16] Sometimes this can even occur within the same species, due to the largely unpredictable results of interactions between an individual's genetic make-up and their specific environmental experiences. [17]

Leaf development

Dicerandra linearifolia leaves grown at the beginning of its development, with lower ambient temperature, are thicker, wider, and possess less stomata than those grown later in the same year. [1]

Root density

In times of sporadic nutrient availability, fine root density increases in order to more efficiently absorb nutrients. In times of water inundation, plants will increase root mass in response to make use of the excess water in the environment. [4]

Nutrient resorption

Plants are capable of adjusting the degree nutrients are reabsorbed from their leaves. Resorption tends to be incomplete in nutrient-rich environments, and conversely nutrient poor environments often trigger complete resorption in plants. [8]

Leaf morphology

Leaves grown during the dry season differ than those grown in wetter seasons. The leaves differ in their shape (leaves grown during the dry season were longer and narrower in comparison to those grown during the wet season), possessed higher trichome density, and lower anthocyanin levels. [18]

Related Research Articles

<span class="mw-page-title-main">Phenotype</span> Composite of the organisms observable characteristics or traits

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity.

Acclimatization or acclimatisation is the process in which an individual organism adjusts to a change in its environment, allowing it to maintain fitness across a range of environmental conditions. Acclimatization occurs in a short period of time, and within the organism's lifetime. This may be a discrete occurrence or may instead represent part of a periodic cycle, such as a mammal shedding heavy winter fur in favor of a lighter summer coat. Organisms can adjust their morphological, behavioral, physical, and/or biochemical traits in response to changes in their environment. While the capacity to acclimate to novel environments has been well documented in thousands of species, researchers still know very little about how and why organisms acclimate the way that they do.

A biological target is anything within a living organism to which some other entity is directed and/or binds, resulting in a change in its behavior or function. Examples of common classes of biological targets are proteins and nucleic acids. The definition is context-dependent, and can refer to the biological target of a pharmacologically active drug compound, the receptor target of a hormone, or some other target of an external stimulus. Biological targets are most commonly proteins such as enzymes, ion channels, and receptors.

<span class="mw-page-title-main">Polyphenism</span> Type of polymorphism where different forms of an animal arise from a single genotype

A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.

<span class="mw-page-title-main">Facilitated variation</span>

The theory of facilitated variation demonstrates how seemingly complex biological systems can arise through a limited number of regulatory genetic changes, through the differential re-use of pre-existing developmental components. The theory was presented in 2005 by Marc W. Kirschner and John C. Gerhart.

<span class="mw-page-title-main">Phenotypic plasticity</span> Trait change of an organism in response to environmental variation

Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.

<span class="mw-page-title-main">Canalisation (genetics)</span> Measure of the ability of a population to produce the same phenotype

Canalisation is a measure of the ability of a population to produce the same phenotype regardless of variability of its environment or genotype. It is a form of evolutionary robustness. The term was coined in 1942 by C. H. Waddington to capture the fact that "developmental reactions, as they occur in organisms submitted to natural selection...are adjusted so as to bring about one definite end-result regardless of minor variations in conditions during the course of the reaction". He used this word rather than robustness to consider that biological systems are not robust in quite the same way as, for example, engineered systems.

Genetic assimilation is a process described by Conrad H. Waddington by which a phenotype originally produced in response to an environmental condition, such as exposure to a teratogen, later becomes genetically encoded via artificial selection or natural selection. Despite superficial appearances, this does not require the (Lamarckian) inheritance of acquired characters, although epigenetic inheritance could potentially influence the result. Waddington stated that genetic assimilation overcomes the barrier to selection imposed by what he called canalization of developmental pathways; he supposed that the organism's genetics evolved to ensure that development proceeded in a certain way regardless of normal environmental variations.

<span class="mw-page-title-main">Plant perception (physiology)</span> Plants interaction to environment

Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption, sound, and touch. The scientific study of plant perception is informed by numerous disciplines, such as plant physiology, ecology, and molecular biology.

Developmental plasticity is a general term referring to changes in neural connections during development as a result of environmental interactions as well as neural changes induced by learning. Much like neuroplasticity, or brain plasticity, developmental plasticity is specific to the change in neurons and synaptic connections as a consequence of developmental processes. A child creates most of these connections from birth to early childhood. There are three primary methods by which this may occur as the brain develops, but critical periods determine when lasting changes may form. Developmental plasticity may also be used in place of the term phenotypic plasticity when an organism in an embryonic or larval stage can alter its phenotype based on environmental factors. However, a main difference between the two is that phenotypic plasticity experienced during adulthood can be reversible, whereas traits that are considered developmentally plastic set foundations during early development that remain throughout the life of the organism.

<i>Bicyclus anynana</i> Species of butterfly

Bicyclus anynana is a small brown butterfly in the family Nymphalidae, the most globally diverse family of butterflies. It is primarily found in eastern Africa from southern Sudan to Eswatini. It is found mostly in woodland areas and flies close to the ground. Male wingspans are 35–40 mm and female wingspans are 45–49 mm.

<span class="mw-page-title-main">Transgenerational epigenetic inheritance</span> Epigenetic transmission without DNA primary structure alteration

Transgenerational epigenetic inheritance is the transmission of epigenetic markers and modifications from one generation to multiple subsequent generations without altering the primary structure of DNA. Thus, the regulation of genes via epigenetic mechanisms can be heritable; the amount of transcripts and proteins produced can be altered by inherited epigenetic changes. In order for epigenetic marks to be heritable, however, they must occur in the gametes in animals, but since plants lack a definitive germline and can propagate, epigenetic marks in any tissue can be heritable.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

Epigenetics is the study of changes in gene expression that occur via mechanisms such as DNA methylation, histone acetylation, and microRNA modification. When these epigenetic changes are heritable, they can influence evolution. Current research indicates that epigenetics has influenced evolution in a number of organisms, including plants and animals.

Behavioral plasticity refers to a change in an organism's behavior that results from exposure to stimuli, such as changing environmental conditions. Behavior can change more rapidly in response to changes in internal or external stimuli than is the case for most morphological traits and many physiological traits. As a result, when organisms are confronted by new conditions, behavioral changes often occur in advance of physiological or morphological changes. For instance, larval amphibians changed their antipredator behavior within an hour after a change in cues from predators, but morphological changes in body and tail shape in response to the same cues required a week to complete.

Phenotypic plasticity is the ability of an individual organism to alter its behavior, morphology and physiology in response to changes in environmental conditions. Root phenotypic plasticity enables plants to adapt to an array of biotic and abiotic constraints that limit plant productivity. Even though the exploitation of soil resources through root activity is energetically costly, natural selection favors plants that can direct root activity to exploit efficiently the heterogeneous distribution of soil resources.

Urban evolution refers to the heritable genetic changes of populations in response to urban development and anthropogenic activities in urban areas. Urban evolution can be caused by mutation, genetic drift, gene flow, or evolution by natural selection. Biologists have observed evolutionary change in numerous species compared to their rural counterparts on a relatively short timescale.

Ecological evolutionary developmental biology (eco-evo-devo) is a field of biology combining ecology, developmental biology and evolutionary biology to examine their relationship. The concept is closely tied to multiple biological mechanisms. The effects of eco-evo-devo can be a result of developmental plasticity, the result of symbiotic relationships or epigenetically inherited. The overlap between developmental plasticity and symbioses rooted in evolutionary concepts defines ecological evolutionary developmental biology. Host- microorganisms interactions during development characterize symbiotic relationships, whilst the spectrum of phenotypes rooted in canalization with response to environmental cues highlights plasticity. Developmental plasticity that is controlled by environmental temperature may put certain species at risk as a result of climate change.

Environmental epigenetics is a branch of epigenetics that studies the influence of external environmental factors on the gene expression of a developing embryo. The way that genes are expressed may be passed down from parent to offspring through epigenetic modifications, although environmental influences do not alter the genome itself.

References

  1. 1 2 3 Winn AA (June 1996). "Adaptation to Fine-Grained Environmental Variation: An Analysis of Within-Individual Leaf Variation in an Annual Plant". Evolution; International Journal of Organic Evolution. 50 (3): 1111–1118. doi:10.2307/2410651. JSTOR   2410651. PMID   28565263.
  2. Gruntman M, Segev U, Tielbörger K (23 May 2019). "Shade-induced plasticity in invasive Impatiens glandulifera populations". Weed Research. 60: 16–25. doi:10.1111/wre.12394. S2CID   213104742 via EBSCOhost.
  3. Alpert P, Simms EL (2002). "The relative advantages of plasticity and fixity in different environments: when is it good for a plant to adjust?". Evolutionary Ecology. 16 (3): 285–297. Bibcode:2002EvEco..16..285A. doi:10.1023/A:1019684612767. S2CID   25740791. ProQuest   750494735 via ProQuest.
  4. 1 2 Wang S, Callaway RM, Zhou DW, Weiner J (Jan 2017). Cahill J (ed.). "Experience of inundation or drought alters the responses of plants to subsequent water conditions". Journal of Ecology. 105 (1): 176–187. Bibcode:2017JEcol.105..176W. doi: 10.1111/1365-2745.12649 .
  5. 1 2 Schneider HM (September 2022). "Characterization, costs, cues and future perspectives of phenotypic plasticity". Annals of Botany. 130 (2): 131–148. doi:10.1093/aob/mcac087. PMC   9445595 . PMID   35771883.
  6. Gabriel W (July 2005). "How stress selects for reversible phenotypic plasticity". Journal of Evolutionary Biology. 18 (4): 873–883. doi: 10.1111/j.1420-9101.2005.00959.x . PMID   16033559. S2CID   1513576.
  7. Magyar G, Kun Á, Oborny B, Stuefer JF (January 2007). "Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments". The New Phytologist. 174 (1): 182–193. doi:10.1111/j.1469-8137.2007.01969.x. PMID   17335508.
  8. 1 2 Drenovsky RE, Pietrasiak N, Short TH (February 2019). Silva T (ed.). "Global temporal patterns in plant nutrient resorption plasticity". Global Ecology and Biogeography. 28 (6): 728–743. Bibcode:2019GloEB..28..728D. doi:10.1111/geb.12885. ISSN   1466-822X. S2CID   92208531.
  9. Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, et al. (September 2011). "The role of developmental plasticity in evolutionary innovation". Proceedings. Biological Sciences. 278 (1719): 2705–2713. doi:10.1098/rspb.2011.0971. PMC   3145196 . PMID   21676977.
  10. de Jong M, Leyser O (2012-01-01). "Developmental plasticity in plants". Cold Spring Harbor Symposia on Quantitative Biology. 77: 63–73. doi: 10.1101/sqb.2012.77.014720 . PMID   23250989.
  11. Goeppner SR, Roberts ME, Beaty LE, Luttbeg B (2020). "Freshwater snail responses to fish predation integrate phenotypic plasticity and local adaptation". Aquatic Ecology. 54 (1): 309–322. Bibcode:2020AqEco..54..309G. doi:10.1007/s10452-019-09744-x. ISSN   1386-2588. S2CID   254191109.
  12. Werner MS, Sieriebriennikov B, Loschko T, Namdeo S, Lenuzzi M, Dardiry M, et al. (August 2017). "Environmental influence on Pristionchus pacificus mouth form through different culture methods". Scientific Reports. 7 (1): 7207. Bibcode:2017NatSR...7.7207W. doi:10.1038/s41598-017-07455-7. PMC   5543044 . PMID   28775277.
  13. Wikelski, Martin; Thom, Corinna (January 2000). "Marine iguanas shrink to survive El Niño". Nature. 403 (6765): 37–38. Bibcode:2000Natur.403...37W. doi:10.1038/47396. ISSN   1476-4687. PMID   10638740. S2CID   205064759.
  14. Pembury Smith MQ, Ruxton GD (October 2020). "Camouflage in predators". Biological Reviews of the Cambridge Philosophical Society. 95 (5): 1325–1340. doi: 10.1111/brv.12612 . hdl: 10023/19948 . PMID   32410297. S2CID   218649415.
  15. Duarte RC, Flores AA, Stevens M (July 2017). "Camouflage through colour change: mechanisms, adaptive value and ecological significance". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 372 (1724): 20160342. doi:10.1098/rstb.2016.0342. PMC   5444063 . PMID   28533459.
  16. Sjulgård H, Iseskog D, Kirchgessner N, Bengough AG, Keller T, Colombi T (2021-08-01). "Reversible and irreversible root phenotypic plasticity under fluctuating soil physical conditions". Environmental and Experimental Botany. 188: 104494. doi: 10.1016/j.envexpbot.2021.104494 . hdl: 20.500.11850/492825 . ISSN   0098-8472. S2CID   235538182.
  17. Peltier E, Sharma V, Martí Raga M, Roncoroni M, Bernard M, Jiranek V, et al. (November 2018). "Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices". BMC Genomics. 19 (1): 772. doi: 10.1186/s12864-018-5145-4 . PMC   6225642 . PMID   30409183.
  18. Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB (October 2007). "Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance". Oecologia. 153 (4): 821–832. Bibcode:2007Oecol.153..821P. doi:10.1007/s00442-007-0794-z. PMID   17636336. S2CID   337572.