Trematode mitochondrial code

Last updated

The trematode mitochondrial code (translation table 21) is a genetic code found in the mitochondria of Trematoda.

Contents

Code

    AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNNKSSSSVVVVAAAADDEEGGGG
Starts = -----------------------------------M---------------M------------
  Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
 Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
 Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

Bases: adenine (A), cytosine (C), guanine (G) and thymine (T) or uracil (U).

Amino acids: Alanine (Ala, A), Arginine (Arg, R), Asparagine (Asn, N), Aspartic acid (Asp, D), Cysteine (Cys, C), Glutamic acid (Glu, E), Glutamine (Gln, Q), Glycine (Gly, G), Histidine (His, H), Isoleucine (Ile, I), Leucine (Leu, L), Lysine (Lys, K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro, P), Serine (Ser, S), Threonine (Thr, T), Tryptophan (Trp, W), Tyrosine (Tyr, Y), Valine (Val, V)

Differences from the standard code

DNA codonsRNA codonsThis code (21) Standard code (1)
TGAUGATrp (W)STOP = Ter (*)
ATAAUAMet (M)Ile (I)
AGAAGASer (S)Arg (R)
AGGAGGSer (S)Arg (R)
AAAAAAAsn (N)Lys (K)

Systematic range and comments

See also

Related Research Articles

The pterobranchia mitochondrial code is a genetic code used by the mitochondrial genome of Rhabdopleura compacta (Pterobranchia). The Pterobranchia are one of the two groups in the Hemichordata which together with the Echinodermata and Chordata form the three major lineages of deuterostomes. AUA translates to isoleucine in Rhabdopleura as it does in the Echinodermata and Enteropneusta while AUA encodes methionine in the Chordata. The assignment of AGG to lysine is not found elsewhere in deuterostome mitochondria but it occurs in some taxa of Arthropoda. This code shares with many other mitochondrial codes the reassignment of the UGA STOP to tryptophan, and AGG and AGA to an amino acid other than arginine. The initiation codons in Rhabdopleura compacta are ATG and GTG.

The yeast mitochondrial code is a genetic code used by the mitochondrial genome of yeasts, notably Saccharomyces cerevisiae, Candida glabrata, Hansenula saturnus, and Kluyveromyces thermotolerans.

The mold, protozoan, and coelenterate mitochondrial code and the mycoplasma/spiroplasma code is the genetic code used by various organisms, in some cases with slight variations, notably the use of UGA as a tryptophan codon rather than a stop codon.

The invertebrate mitochondrial code is a genetic code used by the mitochondrial genome of invertebrates.

The echinoderm and flatworm mitochondrial code is a genetic code used by the mitochondria of certain echinoderm and flatworm species.

The euplotid nuclear code is the genetic code used by Euplotidae. The euplotid code is a socalled "symmetrical code", which results from the symmetrical distribution of the codons. This symmetry allows for arythmic exploration of the codon distribution. In 2013, shCherbak and Makukov, reported that "the patterns are shown to match the criteria of an intelligent signal."

The alternative yeast nuclear code is a genetic code found in certain yeasts. However, other yeast, including Saccharomyces cerevisiae, Candida azyma, Candida diversa, Candida magnoliae, Candida rugopelliculosa, Yarrowia lipolytica, and Zygoascus hellenicus, definitely use the standard (nuclear) code.

The candidate division SR1 and gracilibacteria code is used in two groups of uncultivated bacteria found in marine and fresh-water environments and in the intestines and oral cavities of mammals among others. The difference to the standard and the bacterial code is that UGA represents an additional glycine codon and does not code for termination.

The ascidian mitochondrial code is a genetic code found in the mitochondria of Ascidia.

The alternative flatworm mitochondrial code is a genetic code found in the mitochondria of Platyhelminthes and Nematodes.

The Blepharisma nuclear code is a genetic code found in the nuclei of Blepharisma.

The chlorophycean mitochondrial code is a genetic code found in the mitochondria of Chlorophyceae.

The scenedesmus obliquus mitochondrial code is a genetic code found in the mitochondria of Scenedesmus obliquus, a species of green algae.

The Thraustochytrium mitochondrial code is a genetic code found in the mitochondria of the labyrinthulid protist Thraustochytrium aureum. The mitochondrial genome was sequenced by the Organelle Genome Megasequencing Program.

The pachysolen tannophilus nuclear code is a genetic code found in the ascomycete fungus Pachysolen tannophilus.

The karyorelictid nuclear code is a genetic code used by the nuclear genome of the Karyorelictea ciliate Parduczia sp.

The Condylostoma nuclear code is a genetic code used by the nuclear genome of the heterotrich ciliate Condylostoma magnum.

The Mesodinium nuclear code is a genetic code used by the nuclear genome of the ciliates Mesodinium and Myrionecta.

The Blastocrithidia nuclear code is a genetic code used by the nuclear genome of the trypanosomatid genus Blastocrithidia.

The Cephalodiscidae mitochondrial code is a genetic code used by the mitochondrial genome of Cephalodiscidae (Pterobranchia). The Pterobranchia are one of the two groups in the Hemichordata which together with the Echinodermata and Chordata form the major clades of deuterostomes.

References

This article incorporates text from the United States National Library of Medicine, which is in the public domain. [3]

  1. Evolution of the mitochondrial genetic code. IV. AAA as an asparagine codon in some animal mitochondria. Ohama, T, S. Osawa, K. Watanabe, T.H. Jukes, 1990. J. Molec Evol. 30
  2. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons Garey, J.R. and D.R. Wolstenholme, 1989. J. Molec. Evol. 28: 374-387 329-332.
  3. Elzanowski A, Ostell J, Leipe D, Soussov V. "The Genetic Codes". Taxonomy browser. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine. Retrieved 11 August 2016.