Ultrahyperbolic equation

Last updated

In the mathematical field of partial differential equations, the ultrahyperbolic equation is a partial differential equation for an unknown scalar function u of 2n variables x1, ..., xn, y1, ..., yn of the form

More generally, if a is any quadratic form in 2n variables with signature (n,n), then any PDE whose principal part is is said to be ultrahyperbolic. Any such equation can be put in the form above by means of a change of variables. [1]

The ultrahyperbolic equation has been studied from a number of viewpoints. On the one hand, it resembles the classical wave equation. This has led to a number of developments concerning its characteristics, one of which is due to Fritz John: the John equation.

In 2008, Walter Craig and Steven Weinstein proved that under a nonlocal constraint, the initial value problem is well-posed for initial data given on a codimension-one hypersurface. [2] And later, in 2022, a research team at the University of Michigan extended the conditions for solving ultrahyperbolic wave equations to complex-time (kime), demonstrated space-kime dynamics, and showed data science applications using tensor-based linear modeling of functional magnetic resonance imaging data. [3] [4]

The equation has also been studied from the point of view of symmetric spaces, and elliptic differential operators. [5] In particular, the ultrahyperbolic equation satisfies an analog of the mean value theorem for harmonic functions.

Notes

  1. See Courant and Hilbert.
  2. Craig, Walter; Weinstein, Steven. "On determinism and well-posedness in multiple time dimensions". Proc. R. Soc. A vol. 465 no. 2110 3023-3046 (2008). Retrieved 5 December 2013.
  3. Wang, Y; Shen, Y; Deng, D; Dinov, ID (2022). "Determinism, Well-posedness, and Applications of the Ultrahyperbolic Wave Equation in Spacekime". Partial Differential Equations in Applied Mathematics. Elsevier. 5 (100280): 100280. doi: 10.1016/j.padiff.2022.100280 . PMC   9494226 . PMID   36159725.
  4. Zhang, R; Zhang, Y; Liu, Y; Guo, Y; Shen, Y; Deng, D; Qiu, Y; Dinov, ID (2022). "Kimesurface Representation and Tensor Linear Modeling of Longitudinal Data". Partial Differential Equations in Applied Mathematics. Springer. 34 (8): 6377–6396. doi:10.1007/s00521-021-06789-8. PMC   9355340 . PMID   35936508.
  5. Helgason, S (1959). "Differential operators on homogeneous spaces". Acta Mathematica. Institut Mittag-Leffler. 102 (3–4): 239–299. doi: 10.1007/BF02564248 .

Related Research Articles

<span class="mw-page-title-main">Derivative</span> Instantaneous rate of change (mathematics)

In mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

<span class="mw-page-title-main">Laplace's equation</span> Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

<span class="mw-page-title-main">Eigenfunction</span> Mathematical function of a linear operator

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

<span class="mw-page-title-main">Separation of variables</span> Technique for solving differential equations

In mathematics, separation of variables is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.

In mathematics, the symmetry of second derivatives refers to the possibility of interchanging the order of taking partial derivatives of a function

In mathematics and its applications, classical Sturm–Liouville theory is the theory of real second-order linear ordinary differential equations of the form:

In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, S. Watanabe, I. Shigekawa, and so on finally completed the foundations.

In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory, e.g. in mathematical models that include ultrametric pseudo-differential equations in a non-Archimedean space.

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.

In the mathematical study of partial differential equations, Lewy's example is a celebrated example, due to Hans Lewy, of a linear partial differential equation with no solutions. It shows that the analog of the Cauchy–Kovalevskaya theorem does not hold in the smooth category.

In mathematics, Hörmander's condition is a property of vector fields that, if satisfied, has many useful consequences in the theory of partial and stochastic differential equations. The condition is named after the Swedish mathematician Lars Hörmander.

In mathematics, the Malgrange–Ehrenpreis theorem states that every non-zero linear differential operator with constant coefficients has a Green's function. It was first proved independently by Leon Ehrenpreis and Bernard Malgrange (1955–1956).

Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.

In mathematics, in the field of harmonic analysis, an oscillatory integral operator is an integral operator of the form

In complex analysis of one and several complex variables, Wirtinger derivatives, named after Wilhelm Wirtinger who introduced them in 1927 in the course of his studies on the theory of functions of several complex variables, are partial differential operators of the first order which behave in a very similar manner to the ordinary derivatives with respect to one real variable, when applied to holomorphic functions, antiholomorphic functions or simply differentiable functions on complex domains. These operators permit the construction of a differential calculus for such functions that is entirely analogous to the ordinary differential calculus for functions of real variables.

References