V-2 sounding rocket

Last updated
V-2 Sounding Rocket
V-2 White Sands.jpg
A V-2 sounding rocket at White Sands Missile Range in 1946
TypeSingle-stage
Service history
In service1946-1952
Used by Flag of the United States.svg United States
Specifications
Mass13,000 kg (29,000 lb)
Length14 m (45 ft 11 in)
Diameter1.65 m (5 ft 5 in)
Wingspan3.56 m (11 ft 8 in)

Propellant
Universal newsreel about a V-2 launch at White Sands Proving Ground on May 10, 1946

German V-2 rockets captured by the United States Army at the end of World War II were used as sounding rockets to carry scientific instruments into the Earth's upper atmosphere, and into sub-orbital space, at White Sands Missile Range (WSMR) for a program of atmospheric and solar investigation through the late 1940s. Rocket trajectory was intended to carry the rocket about 100 miles (160 km) high and 30 miles (48 km) horizontally from WSMR Launch Complex 33. Impact velocity of returning rockets was reduced by inducing structural failure of the rocket airframe upon atmospheric re-entry. More durable recordings and instruments might be recovered from the rockets after ground impact, but telemetry was developed to transmit and record instrument readings during flight. [1] :112–116

Contents

History

The first of 300 railroad cars of V-2 rocket components began to arrive at Las Cruces, New Mexico in July 1945 for transfer to WSMR. [2] :246 So much equipment was taken from Germany that the Deutsches Museum later had to obtain a V-2 for an exhibit from the US. [3] In November General Electric (GE) employees began to identify, sort, and reassemble V-2 rocket components in WSMR Building 1538, designated as WSMR Assembly Building 1. The Army completed a blockhouse in WSMR Launch Area 1 in September 1945. WSMR Launch Complex 33 for the captured V-2s was built around this blockhouse. [4]

Initial V-2 assembly efforts produced 25 rockets available for launch. The Army assembled an Upper Atmosphere Research Panel of representative from the Air Materiel Command, Naval Research Laboratory (NRL), Army Signal Corps, Ballistic Research Laboratory, Applied Physics Laboratory, University of Michigan, Harvard University, Princeton University, and General Electric Company. [1] :112 German rocket scientists of Operation Paperclip arrived at Fort Bliss in January 1946 to assist the V-2 rocket testing program. [4] After a static test firing of a V-2 engine on 15 March 1946, the first V-2 rocket launch from Launch Complex 33 was on 16 April 1946. As the possibilities of the program were realized, GE personnel built new control components to replace deteriorated parts and used replacement parts with salvaged materials to make more than 75 V-2 sounding rockets available for atmospheric and solar investigation at WSMR. Approximately two V-2 launches per month were scheduled from Launch Complex 33 until the supply of V-2 sounding rockets was exhausted. [1] :112 A reduced frequency of V-2 sounding rocket investigations from Launch Complex 33 continued until 1952. [5]

See also: Launches of captured V-2 rockets in the United States after 1945

Modifications

The 2,200 pounds (1,000 kg) explosive warhead in the 17 cubic feet (0.48 m3) nose cone was replaced by a package of instrumentation averaging 1,200 pounds (540 kg). Instrumentation was sometimes added to the control compartment, in the rear motor section, between the fuel tanks, or on the fins or skin of the rocket. Nose cone instrumentation was typically assembled at participating laboratories and flown to WSMR to be joined to the rocket in Assembly Building 1. [1] :113-115&135

Rockets returning to Earth intact created an impact crater about 80 feet (24 m) wide and of similar depth which filled with debris to a depth of about 35 feet (11 m). In an effort to preserve instruments, dynamite was strategically placed within the airframe to be detonated at an elevation of 50 kilometres (31 mi) during downward flight at end of the high-altitude scientific observation interval. These explosives weakened the rocket structure so it would be torn apart by aerodynamic forces as it re-entered the denser lower atmosphere. Terminal velocity of tumbling fragments was reduced by an order of magnitude. [1] :115-116&138

Performance

US test launch of a Bumper V-2. Bumper8 launch-GPN-2000-000613.jpg
US test launch of a Bumper V-2.

V-2 sounding rockets were 47 feet (14 m) long and 5 feet 5 inches (1.65 m) in diameter and weighed 28,000 pounds (13,000 kg) with a full load of liquid fuel contributing two-thirds of that weight. The fuel was consumed in the first minute of flight producing a thrust of 56,000 pounds-force (250 kN). Maximum acceleration of 6 Gs was reached at minimum fuel weight just before burnout, and vibrational accelerations were of similar magnitude during powered flight. Velocity at burnout was approximately 5,000 feet (1,500 m) per second. The rocket would typically have a small, unpredictable angular momentum at burnout causing unpredictable roll with pitch or yaw as it coasted upward approximately 75 miles (121 km). A typical flight provided an observation window of 5 minutes at altitudes above 35 miles (56 km). [1] :135–137

Instrumentation

Servomechanisms were devised to compensate for rocket aspect changes as it tumbled after burnout. These allowed Sun-tracking devices to measure the solar electromagnetic spectrum. Limited success was achieved with parachute recovery of instrumentation, but some of the more durable instruments or recordings within the rocket airframe could withstand impact with the earth at subsonic velocities. [1] :116&137

NRL developed a telemetry system using a 23-channel pulse-time modulation. Voltage presented to the input terminals of a given channel determined spacing between two adjacent pulses, not entirely unlike the technique of pulse-position modulation. Space between first and second pulses was determined by channel 1, between second and third pulses by channel 2, and so forth. The system made 200 samplings per second of 24 pulses. Information was transmitted via high-power frequency modulation. Ground receiving stations translated pulse spacings back into voltages which were applied to a bank of string galvanometers to make an approximately continuous record of each channel on a moving roll of film. Accuracy was within approximately 5 percent. [1] :116&138

Scientific operations

A 1946 [5] Naval Research Laboratory launch took the first photographs of the Sun in the ultraviolet spectrum up to an altitude of 88 km (55 mi). [6] [7]

The first night flight of a V-2 sounding rocket began at 10:00 pm (MST) 17 December 1946 on an Applied Physics Laboratory flight. This rocket carried several explosive charges that generated artificial meteors, which could be observed photographically. The experiment package was installed by James Van Allen. Though the flight itself was photographed by observers as far away (285 mi (459 km)) as Tucson, Arizona, the charges and expected meteors were not, and it is likely they did not fire. [8]

Animals tests

The first animals sent into space were fruit flies aboard a U.S.-launched V-2 rocket on 20 February 1947 from White Sands Missile Range, New Mexico. The purpose of the experiment was to explore the effects of radiation exposure at high altitudes. The rocket reached 68 miles (109 km) in 3 minutes and 10 seconds, past both the U.S. Air Force 50-mile and the international 100 km definitions of the boundary of space. The Blossom capsule was ejected and successfully deployed its parachute. The fruit flies were recovered alive. Other V-2 missions carried biological samples, including seeds. [9] [10] [11] [12]

Albert II, a rhesus monkey, became the first primate and first mammal in space on 14 June 1949, in a U.S.-launched V-2, after the failure of the original Albert's mission on ascent. Albert I reached only 30–39 miles (48–63 km) altitude; Albert II reached about 83 miles (134 km). Albert II died on impact after a parachute failure.

Numerous monkeys of several species were flown by the U.S. in the 1950s and 1960s. Monkeys were implanted with sensors to measure vital signs, and many were under anesthesia during launch. The death rate among monkeys at this stage was very high: about two-thirds of all monkeys launched in the 1940s and 1950s died on missions or soon after landing. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Aerobee</span> American sounding rocket

The Aerobee rocket was one of the United States' most produced and productive sounding rockets. Developed by the Aerojet Corporation, the Aerobee was designed to combine the altitude and launching capability of the V-2 with the cost effectiveness and mass production of the WAC Corporal. More than 1000 Aerobees were launched between 1947 and 1985, returning vast amounts of astronomical, physical, aeronomical, and biomedical data.

<span class="mw-page-title-main">Project HARP</span> US-Canada ballistics research project famous for its extremely large gun

Project HARP, short for High Altitude Research Project, was a joint venture of the United States Department of Defense and Canada's Department of National Defence created with the goal of studying ballistics of re-entry vehicles and collecting upper atmospheric data for research. Unlike conventional space launching methods that rely on rockets, HARP instead used very large guns to fire projectiles into the atmosphere at extremely high speeds.

<span class="mw-page-title-main">White Sands Missile Range</span> Military testing area in New Mexico, US

White Sands Missile Range (WSMR) is a United States Army military testing area and firing range located in the US state of New Mexico. The range was originally established in 1941 as the Alamogordo Bombing and Gunnery Range, where the Trinity test site lay at the northern end of the Range, in Socorro County near the towns of Carrizozo and San Antonio. It then became the White Sands Proving Ground on 9 July 1945.

<span class="mw-page-title-main">Sub-orbital spaceflight</span> Spaceflight where the spacecraft does not go into orbit

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.

<span class="mw-page-title-main">Wallops Flight Facility</span> American spaceport in Virginia

Wallops Flight Facility (WFF) is a rocket launch site on Wallops Island on the Eastern Shore of Virginia, United States, just east of the Delmarva Peninsula and approximately 100 miles (160 km) north-northeast of Norfolk. The facility is operated by the Goddard Space Flight Center in Greenbelt, Maryland, and primarily serves to support science and exploration missions for NASA and other Federal agencies. WFF includes an extensively instrumented range to support launches of more than a dozen types of sounding rockets; small expendable suborbital and orbital rockets; high-altitude balloon flights carrying scientific instruments for atmospheric and astronomical research; and, using its Research Airport, flight tests of aeronautical research aircraft, including unmanned aerial vehicles.

<span class="mw-page-title-main">Aerojet General X-8</span> Experimental spin-stabilized rocket for very high altitude research

The Aerojet General X-8 was an unguided, spin-stabilized sounding rocket designed to launch a 150 lb (68 kg) payload to 200,000 feet (61.0 km). The X-8 was a version of the prolific Aerobee rocket family.

<span class="mw-page-title-main">Viking (rocket)</span> American sounding rockets, 1949 to 1955

Viking was a series of twelve sounding rockets designed and built by the Glenn L. Martin Company under the direction of the U.S. Naval Research Laboratory (NRL). Designed to supersede the German V-2, the Viking was the most advanced large, liquid-fueled rocket developed in the United States in the late 1940s, returning valuable scientific data from the edge of space between 1949 and 1955. Viking 4, launched in 1950, was the first sounding rocket to be launched from the deck of a ship.

<span class="mw-page-title-main">Loki (rocket)</span> American unguided anti-aircraft rocket

Loki, officially designated 76mm HEAA Rocket T220, was an American unguided anti-aircraft rocket based on the German Taifun. Like the Taifun, Loki never saw service in its original role, but later found widespread use as a sounding rocket. It was so successful in this role that several advanced versions were developed on the basic Loki layout, including the final Super Loki.

<span class="mw-page-title-main">WAC Corporal</span> Sounding rocket

The WAC Corporal was the first sounding rocket developed in the United States and the first vehicle to achieve hypersonic speeds. It was an offshoot of the Corporal program, that was started by a partnership between the United States Army Ordnance Corps and the California Institute of Technology in June 1944 with the ultimate goal of developing a military ballistic missile.

<span class="mw-page-title-main">Arcas (rocket)</span>

Arcas was the designation of an American sounding rocket, developed by the Atlantic Research Corp., Alexandria, Va.

<span class="mw-page-title-main">Starfish Prime</span> 1962 high-altitude nuclear test by the U.S. over the Pacific Ocean

Starfish Prime was a high-altitude nuclear test conducted by the United States, a joint effort of the Atomic Energy Commission (AEC) and the Defense Atomic Support Agency. It was launched from Johnston Atoll on July 9, 1962, and was the largest nuclear test conducted in outer space, and one of five conducted by the US in space.

<span class="mw-page-title-main">Air Force Missile Development Center</span> Military unit

The Air Force Missile Development Center and its predecessors were Cold War units that conducted and supported numerous missile tests using facilities at Holloman Air Force Base, where the center was the host unit.

<span class="mw-page-title-main">RTV-G-4 Bumper</span> Type of rocket

The RTV-G-4 Bumper was a sounding rocket built by the United States. A combination of the German V-2 rocket and the WAC Corporal sounding rocket, it was used to study problems pertaining to two-stage high-speed rockets. The Bumper program launched eight rockets between May 13, 1948 and July 29, 1950. The first six flights were conducted at the White Sands Missile Range; the seventh launch, Bumper 8 on July 24, 1950, was the first rocket launched from Cape Canaveral.

<span class="mw-page-title-main">RTV-A-2 Hiroc</span> 20th-century US research project

The RTV-A-2 Hiroc was a product of the United States' first effort to develop an intercontinental ballistic missile (ICBM). The project was named MX-774. The project was canceled in 1947, but leftover funds were used to build and launch three of the planned 10 research vehicles designated RTV-A-2. The design included several innovations; the gimbaled thrust chambers provided guidance control, the internal gas pressure was used to support the airframe and the nose cap was separable. All of these concepts were later used on the Atlas missile and the first two on the Viking rocket. Also developed as part of MX-774 was the Azusa guidance system which was not used on the Hiroc missile but did contribute to the Atlas missile as well as many other early guided missiles launched from Cape Canveral.

<span class="mw-page-title-main">Spaceflight before 1951</span> List of spaceflights prior to the year 1951

Spaceflight as a practical endeavor began during World War II with the development of operational liquid-fueled rockets. Beginning life as a weapon, the V-2 was pressed into peaceful service after the war at the United States' White Sands Missile Range as well as the Soviet Union's Kapustin Yar. This led to a flourishing of missile designs setting the stage for the exploration of space. The small American WAC Corporal rocket was evolved into the Aerobee, a much more powerful sounding rocket. Exploration of space began in earnest in 1947 with the flight of the first Aerobee, 46 of which had flown by the end of 1950. These and other rockets, both Soviet and American, returned the first direct data on air density, temperature, charged particles and magnetic fields in the Earth's upper atmosphere.

<span class="mw-page-title-main">Hermes program</span> United States Army missile research program

Project Hermes was a missile research program run by the Ordnance Corps of the United States Army from November 15, 1944, to December 31, 1954, in response to Germany's rocket attacks in Europe during World War II. The program was to determine the missile needs of army field forces. A research and development partnership between the Ordnance Corps and General Electric started November 20, 1944 and resulted in the "development of long-range missiles that could be used against both ground targets and high-altitude aircraft."

USS <i>Desert Ship</i> (LLS-1) American Navy facility in New Mexico

USS Desert Ship (LLS-1) is a concrete blockhouse providing assembly and launch facilities simulating shipboard conditions for Navy surface-to-air weapons testing at the Naval Air Warfare Center (NAWC) Weapons Division – White Sands.

The White Sands Test Center (WSTC) is responsible for planning and conducting tests at White Sands Missile Range (WSMR), New Mexico, USA. WSTC reports to the United States Army Test and Evaluation Command (ATEC). WSMR is designated as an activity within the Department of Defense (DoD) Major Range and Test Facility Base (MRTFB), a core set of DoD Test and Evaluation (T&E) infrastructure and workforce preserved as a national asset to support the DoD acquisition system. The Range possesses capabilities and infrastructure utilized by the US Army, Navy, Air Force and other government agencies as well as universities, private industry, and foreign militaries. As a tri-service facility, WSTC supports the Army by providing data collection and analysis, instrumentation development, modeling and simulation, research assessment, and technical services.

<span class="mw-page-title-main">Albert II (monkey)</span> First primate and first mammal in space

Albert II was a male rhesus macaque monkey who was the first primate and first mammal in space. He flew from Holloman Air Force Base in New Mexico, United States, to an altitude of 83 miles aboard a U.S. V-2 sounding rocket on June 14, 1949. Albert died upon reentry after a parachute failure caused his capsule to strike the ground at high speed. Albert's respiratory and cardiological data were recorded up to the moment of impact.

Albert I was a rhesus macaque monkey and the first mammal launched on a rocket on June 18, 1948. The launch was staged at White Sands Proving Ground, Las Cruces, New Mexico. Albert I, a nine-pound monkey, was anesthetized and placed inside the rocket's crew capsule in the nose of the V-2 rocket. The flight did not reach outer space.

References

  1. 1 2 3 4 5 6 7 8 Kuiper, Gerard (1952) [1949]. The Atmospheres of the Earth and Planets. Chicago: The University of Chicago Press. pp. 112–117 & 134–138.
  2. Ley, Willy (1958) [1944]. Rockets, Missiles and Space Travel. New York: The Viking Press. pp. 246, 253.
  3. Ley, Willy (June 1964). "Anyone Else for Space?". For Your Information. Galaxy Science Fiction. pp. 110–128.
  4. 1 2 "A Brief History of White Sands Proving Ground 1941–1965" (PDF). New Mexico State University. Archived from the original (PDF) on 28 October 2014. Retrieved 19 August 2010.
  5. 1 2 Wade, Mark. "V-2". Archived from the original on August 20, 2016. Retrieved 7 December 2020.
  6. Richard Tousey; C.V. Strain; F.S. Johnson; J.J. Oberly (March 1947). "The solar ultraviolet spectrum from a V-2 rocket". The Astronomical Journal. 52 (6): 158-159. Bibcode:1947AJ.....52R.158T. doi:10.1086/106028.
  7. "Richard Tousey (1908 - 1997) | American Astronomical Society". aas.org. Archived from the original on 2019-08-19. Retrieved 2017-07-24.
  8. F. Zwicky (February 1947). "The First Night-Firing of a V-2 Rocket in the United States". Publications of the Astronomical Society of the Pacific. 59 (346): 32. Bibcode:1947PASP...59...32Z. doi: 10.1086/125894 . S2CID   122476458.
  9. Beischer, DE; Fregly, AR (1962). "Animals and man in space. A chronology and annotated bibliography through the year 1960" (PDF). US Naval School of Aviation Medicine. ONR TR ACR-64 (AD0272581). Archived from the original on 24 March 2016. Retrieved 14 June 2011.{{cite journal}}: CS1 maint: unfit URL (link)
  10. UPPER AIR ROCKET SUMMARY V-2 NO. 20. postwarv2.com
  11. "The Beginnings of Research in Space Biology at the Air Force Missile Development Center, 1946–1952". History of Research in Space Biology and Biodynamics. NASA. Archived from the original on 25 January 2008. Retrieved 31 January 2008.
  12. "V-2 Firing Tables". White Sands Missile Range. Archived from the original on 25 January 2008. Retrieved 31 January 2008.
  13. Gray, Tara. "A Brief History of Animals in Space". National Aeronautics and Space Administration. NASA. Retrieved 9 December 2019.