Vertex (curve)

Last updated
An ellipse (red) and its evolute (blue). The dots are the vertices of the curve, each corresponding to a cusp on the evolute. Ellipse evolute.svg
An ellipse (red) and its evolute (blue). The dots are the vertices of the curve, each corresponding to a cusp on the evolute.

In the geometry of plane curves, a vertex is a point of where the first derivative of curvature is zero. [1] This is typically a local maximum or minimum of curvature, [2] and some authors define a vertex to be more specifically a local extremum of curvature. [3] However, other special cases may occur, for instance when the second derivative is also zero, or when the curvature is constant. For space curves, on the other hand, a vertex is a point where the torsion vanishes.

Contents

Examples

A hyperbola has two vertices, one on each branch; they are the closest of any two points lying on opposite branches of the hyperbola, and they lie on the principal axis. On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form:

it can be found by completing the square or by differentiation. [2] On an ellipse, two of the four vertices lie on the major axis and two lie on the minor axis. [4]

For a circle, which has constant curvature, every point is a vertex.

Cusps and osculation

Vertices are points where the curve has 4-point contact with the osculating circle at that point. [5] [6] In contrast, generic points on a curve typically only have 3-point contact with their osculating circle. The evolute of a curve will generically have a cusp when the curve has a vertex; [6] other, more degenerate and non-stable singularities may occur at higher-order vertices, at which the osculating circle has contact of higher order than four. [5] Although a single generic curve will not have any higher-order vertices, they will generically occur within a one-parameter family of curves, at the curve in the family for which two ordinary vertices coalesce to form a higher vertex and then annihilate.

The symmetry set of a curve has endpoints at the cusps corresponding to the vertices, and the medial axis, a subset of the symmetry set, also has its endpoints in the cusps.

Other properties

According to the classical four-vertex theorem, every simple closed planar smooth curve must have at least four vertices. [7] A more general fact is that every simple closed space curve which lies on the boundary of a convex body, or even bounds a locally convex disk, must have four vertices. [8] Every curve of constant width must have at least six vertices. [9]

If a planar curve is bilaterally symmetric, it will have a vertex at the point or points where the axis of symmetry crosses the curve. Thus, the notion of a vertex for a curve is closely related to that of an optical vertex, the point where an optical axis crosses a lens surface.

Notes

  1. Agoston (2005), p. 570; Gibson (2001), p. 126.
  2. 1 2 Gibson (2001), p. 127.
  3. Fuchs & Tabachnikov (2007), p. 141.
  4. Agoston (2005), p. 570; Gibson (2001), p. 127.
  5. 1 2 Gibson (2001), p. 126.
  6. 1 2 Fuchs & Tabachnikov (2007), p. 142.
  7. Agoston (2005), Theorem 9.3.9, p. 570; Gibson (2001), Section 9.3, "The Four Vertex Theorem", pp. 133–136; Fuchs & Tabachnikov (2007), Theorem 10.3, p. 149.
  8. Sedykh (1994); Ghomi (2015)
  9. Martinez-Maure (1996); Craizer, Teixeira & Balestro (2018)

Related Research Articles

Parabola Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

Polyhedron Three-dimensional shape with flat polygonal faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron.

Rectangle Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term oblong is occasionally used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

Klein quartic Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group. The quartic was first described in.

In mathematics, two functions have a contact of order k if, at a point P, they have the same value and k equal derivatives. This is an equivalence relation, whose equivalence classes are generally called jets. The point of osculation is also called the double cusp. Contact is a geometric notion; it can be defined algebraically as a valuation.

Witch of Agnesi Cubic plane curve

In mathematics, the witch of Agnesi is a cubic plane curve defined from two diametrically opposite points of a circle. It gets its name from Italian mathematician Maria Gaetana Agnesi, and from a mistranslation of an Italian word for a sailing sheet. Before Agnesi, the same curve was studied by Fermat, Grandi, and Newton.

Midpoint Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

Curve of constant width Shape with width independent of orientation

In geometry, a curve of constant width is a simple closed curve in the plane whose width is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

Osculating circle Circle of immediate corresponding curvature of a curve at a point

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans by Leibniz.

Four-vertex theorem Closed curves have ≥4 extremes of curvature

The four-vertex theorem of geometry states that the curvature along a simple, closed, smooth plane curve has at least four local extrema. The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex. This theorem has many generalizations, including a version for space curves where a vertex is defined as a point of vanishing torsion.

Antiparallelogram Polygon with four crossed edges of two lengths

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, sides in the longer pair cross each other as in a scissors mechanism. Antiparallelograms are also called contraparallelograms or crossed parallelograms.

In geometry, a vertex, often denoted by letters such as , , , , is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices.

Bricard octahedron Self-crossing 8-sided flexible polyhedron

In geometry, a Bricard octahedron is a member of a family of flexible polyhedra constructed by Raoul Bricard in 1897. The overall shape of one of these polyhedron may change in a continuous motion, without any changes to the lengths of its edges nor to the shapes of its faces. These octahedra were the first flexible polyhedra to be discovered.

Conic section Curve obtained by intersecting a cone and a plane

In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

Convex curve

In geometry, a convex curve is a simple curve in the Euclidean plane which lies completely on one side of each and every one of its tangent lines.

Tennis ball theorem Smooth curves that evenly divide the area of a sphere have at least 4 inflections

In geometry, the tennis ball theorem states that any smooth curve on the surface of a sphere that divides the sphere into two equal-area subsets without touching or crossing itself must have at least four inflection points, points at which the curve does not consistently bend to only one side of its tangent line. The tennis ball theorem was first published under this name by Vladimir Arnold in 1994, and is often attributed to Arnold, but a closely related result appears earlier in a 1968 paper by Beniamino Segre, and the tennis ball theorem itself is a special case of a theorem in a 1977 paper by Joel L. Weiner. The name of the theorem comes from the standard shape of a tennis ball, whose seam forms a curve that meets the conditions of the theorem; the same kind of curve is also used for the seams on baseballs.

Tait–Kneser theorem If a smooth plane curve has monotonic curvature, then its osculating circles are nested

In differential geometry, the Tait–Kneser theorem states that, if a smooth plane curve has monotonic curvature, then the osculating circles of the curve are disjoint and nested within each other. The logarithmic spiral or the pictured Archimedean spiral provide examples of curves whose curvature is monotonic for the entire curve. This monotonicity cannot happen for a simple closed curve but for such curves the theorem can be applied to the arcs of the curves between its vertices.

Ideal polyhedron Type of polyhedron in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

Hedgehog (geometry) Type of mathematical plane curve

In differential geometry, a hedgehog or plane hedgehog is a type of plane curve, the envelope of a family of lines determined by a support function. More intuitively, sufficiently well-behaved hedgehogs are plane curves with one tangent line in each oriented direction. A projective hedgehog is a restricted type of hedgehog, defined from an anti-symmetric support function, and forms a curve with one tangent line in each direction, regardless of orientation.

References