Vulcanized fibre

Last updated
Formed fishpaper (electrical grade vulcanized fibre) insulating shield FishPaper.jpg
Formed fishpaper (electrical grade vulcanized fibre) insulating shield

Vulcanized fibre or red fibre is a laminated plastic composed of only cellulose. The material is a tough, resilient, hornlike material that is lighter than aluminium, tougher than leather, and stiffer than most thermoplastics. The newer wood-laminating grade of vulcanized fibre is used to strengthen wood laminations used in skis, skateboards, support beams and as a sub-laminate under thin wood veneers.

Contents

A product very similar to vulcanized fibre is leatheroid. Leatheroid, however, is made using a different chemical process. Since 2004, the scientific community has regained interest in this material due to its renewability and excellent physical properties, giving birth to the field of all-cellulose composites. [1] These composites are all made of a matrix consisting of dissolved or partially dissolved cellulose, and the reinforcement remains cellulose fibres. A variety of solvents other than zinc chloride has been explored, including sodium hydroxide at low temperatures and ionic liquids. [2] [3] Whereas the original idea was to use long reinforcing fibres (ramie, flax, viscose, etc) in order to confer the composites with anisotropic mechanical properties, the field has also explored the use of nanocellulose.

Applications

Vulcanized fibre has a long history in engineering, from the Victorian period onward. Although there are now many materials, mostly synthetic polymers, with higher performance, fibre has been applied widely and still retains many applications. As it is stronger in thin sections between mechanically rigid components, rather than relying on its own strength, it has mostly been used as washers, gaskets, and a variety of shims or packing pieces.

Fibre washers are one of the cheapest conformal elastomer gaskets for sealing pipe unions and general plumbing work. They swell slightly with exposure to water, making a good seal. They may also be used with hydrocarbons, provided the temperature is not too high. Unlike rubber, fibre washer seals are considered as a single-use item.

Fibre sheet is easily die-cut to complex shapes and so it is widely used for shaped gaskets. These may be used for sealing, as heat insulators, or as mechanical spacers.

Until the development of modern plastics from the 1930s, fibre was the standard electrical insulating material for many small components. It could be cut to size easily, either in mass production or hand-trimmed to fit. It was particularly common in the assembly of large machines, such as motor winding.

History

The British patent for vulcanized fibre was obtained in 1859 by the Englishman Thomas Taylor. [4] He gained the patent after the introduction of celluloid in 1856 and before the invention of viscose rayon (regenerated cellulose) in 1894. In 1871 Thomas Taylor obtained the United States Patent for vulcanized fibre. [5] [6] The first organized industrial company to make vulcanized fibre was the Vulcanized Fibre Company, incorporated first as a New York Corporation formed June 19, 1873 listed with William Courtenay President and Charles F. Cobby Secretary. [7] The first N.Y. corporation was also found in the 1873 N.Y. City Directory [8] which also listed William Courtenay President and Charles F. Cobby Secretary in 1873. From 1873 until 1878 the Vulcanized Fiber Co. had a New York office address of 17 Dey St., while the factory was located in Wilmington Delaware. This can be seen in the many advertisements that were placed in different publications at this time in history. [9] A special charter [10] was granted by the state of Delaware in 1873 until the Delaware corporation was finally incorporated on February 8, 1875 [11] which now listed William Courtenay President and Clement B. Smyth Secretary.

In 1884 Courtenay & Trull Co. N.Y. was merged into the Vulcanized Fibre Co. [12] which gave the company control over a new invention called by the trade name "Gelatinized Fibre".

On December 4, 1901, during a merger and consolidation the Vulcanized Fibre Co. [13] changed its name to the "American Vulcanized Fiber Co." which was formed for the purpose of consolidating: Kartavert Mfg. Company, Wilmington, Delaware; American Hard Fibre Company, Newark, Delaware; Vulcanized Fibre Company, Wilmington, Delaware. and the Laminar Fibre Company of North Cambridge, Mass.

In 1922 the name was changed again when it was directly purchased by the National Fibre & Insulation Company of Yorklyn Delaware (who was also the owner of the Keystone Fibre Co.). The president of the National Fibre Company at this time was J. Warren Marshall, who took the same office after consolidating into the new company "National Vulcanized Fibre Company.

In 1965 the name was changed again to the NVF Company in order to avoid confusion over the years with a new and changing product line. [14]

The water power of the Piedmont streams in Northern Delaware led to a proliferation of companies in the vulcanized fibre business. Over the years, these companies reorganized and merged. In 1922 National Vulcanized Fiber Company emerged as the main competitor to Spaulding Fibre, which had begun developing vulcanized products in Rochester, New Hampshire and Tonawanda, New York, nearly a quarter century after the industry began in Delaware.

Some of the companies involved in vulcanized fibre development in the Wilmington region were the Nunsuch Fiber Company, American Hard Fiber Company, American Vulcanized Fibre Company, Continental Fibre Co., Diamond State Fibre Co., and Franklin Fibre Company. In the 1965 Post’s Pulp and Paper Directory, National Vulcanized Fibre Co. was listed as having two mills' producing rag paper for vulcanized fibre. They were at Newark, producing 15 tons a day; and Yorklyn, producing 18 tons a day. This compares with Spaulding Fibre’s Tonawanda plant, then producing 40 tons a day (Post’s directory). The competitors also produced bakelite, but marketed them under different names: Spaulding’s was Spauldite and National’s brand was Phenolite and Iten Industries' Resiten or Itenite.

Process

The process started with paper made from cotton rags. Before the processing of wood pulp and chemical wood pulps in the mid-19th century, the dominant fibre source for paper making was cotton and linen rags. The cotton rag sheet produced for conversion to vulcanized fibre is made like a sheet suitable for saturating. A paper is made for saturating by omitting any sizing additive, either beater added or surface applied. Today most paper sheets made for writing, printing, and coating have internal (beater added) sizing provided by rosin, alkyl succinic anhydride (ASA), or alkyl ketene dimer (AKD) and surface sizing provided by starch. A sheet made for saturating would have none of those chemical ingredients. The unsized saturating cotton fibre paper prepared for vulcanized fibre would be passed through a vat containing a zinc chloride solution.

Zinc chloride

Zinc chloride is highly soluble in water. The solution used in saturating the paper was 70 Baumé in density (1.93 specific gravity) and about 43.3 °C (109.9 °F; 316.4 K). [15] This is roughly a 70% percent zinc chloride solution. Zinc chloride is a mild Lewis acid with a solution pH of about 4. Zinc chloride can dissolve cellulose, starch, and silk. The zinc chloride used in making vulcanized fibre swelled and gelatinized the cellulose. The fibre swelling explains why paper filters cannot be used to filter zinc chloride solutions. It is also the reason why a number of paper plies were used to build up to the desired vulcanized fibre thickness, rather treating a single paperboard thickness. For instance, the practice was to use 8 paper plies of 0.04 mm thickness each, as opposed to a single paperboard ply of 0.32 mm.

Pressing

Once the paper plies were saturated with the gelatinizing zinc chloride, they were pressed together. The pressing allowed intimate contact of the cellulose fibres, thus promoting bonding between the cellulose chains. Once the bonding was established, the process of leaching out the zinc chloride from the vulcanized fibre could begin. The leaching (removal by diffusion out) of the zinc chloride was accomplished by subjecting the vulcanized fibre to successively less concentrated baths of zinc chloride. The rate at which this could occur was constrained by osmotic forces. If the rate at which the vulcanized fibre was subjected to lower and lower concentrations of zinc chloride solution were too rapid, the osmotic forces could result in ply separations. The final leaching bath concentration was 0.05% zinc chloride. Thicknesses up to 0.093” (=2.4 mm), can be made on continuous lines that stretch up to 1,000 feet (305m) in length.

Vats

For thickness above 0.093” (2.4 mm) and up to 0.375” (9.5 mm), a discrete laminated sheet (similar in size (l x w) to plywood) was produced by the cutdown process. The cutdown sheets were racked and moved from vat to vat by overhead tracked cranes. Each vat was successively less concentrated until the desired 0.05% was reached. The thicker the material, the longer it took to leach the zinc chloride to 0.05%. For the thickest products, times of 18 months to 2 years were needed. The zinc chloride used in these processes was for the most part not consumed in achieving the desired bonding. Indeed any dilution of the zinc chloride resulting from the leaching was dealt with by using evaporators to bring the zinc chloride solution back to the 70 Baume needed for using it again for saturating. In a sense, zinc chloride can be thought of as a catalyst in the making of the vulcanized fibre.

Dried and pressed

Once the vulcanized fibre is leached free of the zinc chloride, it is dried to 5 to 6 percent moisture, and pressed or calendered to flatness. The continuous process-made vulcanized fibre could then be sheeted or wound up into rolls. The density of the finished vulcanized fibre is 2 to 3 times greater than the paper from which it starts. The density increase is the result of 10% machine direction shrinkage, 20% cross machine direction shrinkage, and 30% shrinkage in thickness.[ citation needed ]

Properties

The final product is a homogeneous nearly 100%-cellulose mass free from any artificial glues, resins, or binders. The finished vulcanized fibre has useful mechanical and electrical properties. It offers high tear and tensile strength, while in the thinner thicknesses allowing flexibility to conform to curves and bends. In thicker thicknesses, it can be moulded to shape with steam and pressure. One application for vulcanized fibre that attests to its physical strength is that it is the preferred material for heavy sanding discs. Physical strength is anisotropic, owing to the roller calendering process, with it typically being 50% stronger in the sheet's longitudinal direction, rather than transverse. [16]

The electrical properties exhibited by vulcanized fibre are high insulating value, and arc and track resistance with service temperature of up to 110 to 120 °C. Fibre was popular as an electrical insulator for a large part of the mid-20th century, not because its resistance as an insulator was particularly good, especially not if moisture levels were high, but it showed far better resistance to tracking and breakdown than early wood flour-filled polymers like Bakelite.

Vulcanized fibre shows high resistance to penetration by most organic solvents, oils, and petroleum derivatives.

Grades

Related Research Articles

<span class="mw-page-title-main">Pulp (paper)</span> Fibrous material used notably in papermaking

Pulp is a fibrous lignocellulosic material prepared by chemically, semi-chemically or mechanically producing cellulosic fibers from wood, fiber crops, waste paper, or rags. Mixed with water and other chemicals or plant-based additives, pulp is the major raw material used in papermaking and the industrial production of other paper products.

<span class="mw-page-title-main">Medium-density fibreboard</span> Engineered wood product

Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibre, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally denser than plywood. It is made up of separated fibre but can be used as a building material similar in application to plywood. It is stronger and denser than particle board.

<span class="mw-page-title-main">Paperboard</span> Thick paper-based material

Paperboard is a thick paper-based material. While there is no rigid differentiation between paper and paperboard, paperboard is generally thicker than paper and has certain superior attributes such as foldability and rigidity. According to ISO standards, paperboard is a paper with a grammage above 250 g/m2, but there are exceptions. Paperboard can be single- or multi-ply.

Wood fibres are usually cellulosic elements that are extracted from trees and used to make materials including paper.

<span class="mw-page-title-main">Paper machine</span> Industrial machine used in the pulp and paper industry

A paper machine is an industrial machine which is used in the pulp and paper industry to create paper in large quantities at high speed. Modern paper-making machines are based on the principles of the Fourdrinier Machine, which uses a moving woven mesh to create a continuous paper web by filtering out the fibres held in a paper stock and producing a continuously moving wet mat of fibre. This is dried in the machine to produce a strong paper web.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

<span class="mw-page-title-main">GLARE</span>

Glare is a fiber metal laminate (FML) composed of several very thin layers of metal interspersed with layers of S-2 glass-fiber pre-preg, bonded together with a matrix such as epoxy. The uni-directional pre-preg layers may be aligned in different directions to suit predicted stress conditions.

<span class="mw-page-title-main">Washer (hardware)</span> Thin plate with a hole, normally used to distribute the load of a threaded fastener

A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration.

<span class="mw-page-title-main">Wood–plastic composite</span> Composite materials made of wood fiber and thermoplastics

Wood–plastic composites (WPCs) are composite materials made of wood fiber/wood flour and thermoplastic(s) such as polythene (PE), polypropylene (PP), polyvinyl chloride (PVC), or polylactic acid (PLA).

<span class="mw-page-title-main">Pulp mill</span> Facility which pulps wood or plant fibre

A pulp mill is a manufacturing facility that converts wood chips or other plant fiber sources into a thick fiber board which can be shipped to a paper mill for further processing. Pulp can be manufactured using mechanical, semi-chemical, or fully chemical methods. The finished product may be either bleached or non-bleached, depending on the customer requirements.

<span class="mw-page-title-main">Tracing paper</span> Paper made to have low opacity, allowing light to pass through

Tracing paper is paper made to have low opacity, allowing light to pass through. Its origins date back to at least the 1300s where it was used by artists of the Italian Renaissance. In the 1880s, tracing paper was produced en masse, used by architects, design engineers, and artists. Tracing paper was key in creating drawings that could be copied precisely using the diazo copy process. It then found many other uses. The original use for drawing and tracing was largely superseded by technologies that do not require diazo copying or manual copying of drawings.

<span class="mw-page-title-main">Paper</span> Material for writing, printing, etc.

Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, rags, grasses, or other vegetable sources in water, draining the water through a fine mesh leaving the fibre evenly distributed on the surface, followed by pressing and drying. Although paper was originally made in single sheets by hand, almost all is now made on large machines—some making reels 10 metres wide, running at 2,000 metres per minute and up to 600,000 tonnes a year. It is a versatile material with many uses, including printing, painting, graphics, signage, design, packaging, decorating, writing, and cleaning. It may also be used as filter paper, wallpaper, book endpaper, conservation paper, laminated worktops, toilet tissue, currency, and security paper, or in a number of industrial and construction processes.

Dissolving pulp, also called dissolving cellulose, is bleached wood pulp or cotton linters that has a high cellulose content. It has special properties including a high level of brightness and uniform molecular-weight distribution. This pulp is manufactured for uses that require a high chemical purity, and particularly low hemicellulose content, since the chemically similar hemicellulose can interfere with subsequent processes. Dissolving pulp is so named because it is not made into paper, but dissolved either in a solvent or by derivatization into a homogeneous solution, which makes it completely chemically accessible and removes any remaining fibrous structure. Once dissolved, it can be spun into textile fibers, or chemically reacted to produce derivatized celluloses, such cellulose triacetate, a plastic-like material formed into fibers or films, or cellulose ethers such as methyl cellulose, used as a thickener.

<span class="mw-page-title-main">Electrical insulation paper</span> Paper used as electrical insulation

Electrical insulation papers are paper types that are used as electrical insulation in many applications due to pure cellulose having outstanding electrical properties. Cellulose is a good insulator and is also polar, having a dielectric constant significantly greater than one. Electrical paper products are classified by their thickness, with tissue considered papers less than 1.5 mils (0.0381 mm) thickness, and board considered more than 20 mils (0.508 mm) thickness.

<span class="mw-page-title-main">Parchment paper</span> Cellulose-based paper that is used in baking

Parchment paper, also known as a vegetable parchment or baking paper, is a cellulose-based composite that has been processed to give it additional properties including non-stickiness, grease resistance, and resistance to humidity. It is commonly used in baking as a disposable non-stick, grease resistant surface. It should not be confused with waxed paper, which is paper that has been coated in wax.

<span class="mw-page-title-main">Cellulose fiber</span> Fibers made with ethers or esters of cellulose

Cellulose fibers are fibers made with ethers or esters of cellulose, which can be obtained from the bark, wood or leaves of plants, or from other plant-based material. In addition to cellulose, the fibers may also contain hemicellulose and lignin, with different percentages of these components altering the mechanical properties of the fibers.

<span class="mw-page-title-main">National Vulcanized Fiber</span>

NVF Company, formerly known as National Vulcanized Fiber, was a private company based in Yorklyn, Delaware. One of its original products, a sheet-like material called Forbon, was commonly used on guitar pickups. NVF also made a product called Yorkite, another vulcanized fibre, that has wood grain printed directly on the material.

<span class="mw-page-title-main">Paper chemicals</span> Chemicals used in paper manufacturing

Paper chemicals designate a group of chemicals that are used for paper manufacturing, or modify the properties of paper. These chemicals can be used to alter the paper in many ways, including changing its color and brightness, or by increasing its strength and resistance to water. The chemicals can be defined on basis of their usage in the process.

Leatheroid is cellulose material very similar to vulcanized fibre in physical properties and uses. It is prepared using unsized cotton rag paper and mineral acid.

<span class="mw-page-title-main">Reinforcement (composite)</span> Constituent of a composite material which increases tensile strength

In materials science, reinforcement is a constituent of a composite material which increases the composite's stiffness and tensile strength.

References

  1. Huber, Tim; Müssig, Jorg; Curnow, Owen; Pang, Shusheng; Bickerton, Simon; Staiger, Mark (2012). "A critical review of all-cellulose composites". Journal of Materials Science. 47 (3): 1171–1186. Bibcode:2012JMatS..47.1171H. doi:10.1007/s10853-011-5774-3.
  2. Duchemin, Benoit; Mathew, Aji; Oksman, Kristiina (2009). "All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride". Composites Part A: Applied Science and Manufacturing. 40 (12): 1171–1186. doi:10.1016/j.compositesa.2009.09.013.
  3. Dormanns, Jan; Schuermann, Jeremias; Müssig, Jorg; Duchemin, Benoit; Staiger, Mark (2016). "Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system". Composites Part A: Applied Science and Manufacturing. 82: 130–140. doi:10.1016/j.compositesa.2015.12.002.
  4. Pike Creek: Industry And Farming Along A Northern Delaware River; p 4-8.
  5. "PLASTICS HISTORY: Plastic Distributor & Fabricator", Plastics Magazine
  6. Taylor, Thomas, Improvement in the treatment of paper and paper-pulp, U.S. patent 114,880 , granted May 16, 1871.
  7. "History of the state of Delaware" Volume 2 Page 415
  8. The New York City register page 34
  9. "Early Known Insulating Materials (incl Vulcanized Fibre Co)". Archived from the original on 15 March 2012.
  10. Industries of Delaware: historical and descriptive review : cities, towns and business interests, institutions, manufacturing and commercial advantages
  11. Laws of the state of Delaware, Volum 15
  12. Courtenay & Trull Co. N.Y. was merged into the Vulcanized Fibre Co.
  13. VULCANIZED FIBER COMPANY - MERGES INTO A NEW NAME AMERICAN VULCANIZED FIBRE CO.
  14. Fiber Company History & Merger Tree
  15. James P. Casey, Pulp and Paper Chemistry and Chemical Technology; Vol. II; Second Edition Revised and Enlarged: Interscience Publishers Inc., New York, John Wiley & Sons Inc., New York; 1952, 1960; Library of Congress 60-13120; Third Printing 1967, pp654-655
  16. "Tufnol Vulcanised Fibre Sheet". Tufnol.