Whitehead problem

Last updated

In group theory, a branch of abstract algebra, the Whitehead problem is the following question:

Contents

Is every abelian group A with Ext 1(A, Z) = 0 a free abelian group?

Saharon Shelah proved that Whitehead's problem is independent of ZFC, the standard axioms of set theory. [1]

Refinement

Assume that A is an abelian group such that every short exact sequence

must split if B is also abelian. The Whitehead problem then asks: must A be free? This splitting requirement is equivalent to the condition Ext1(A, Z) = 0. Abelian groups A satisfying this condition are sometimes called Whitehead groups, so Whitehead's problem asks: is every Whitehead group free? It should be mentioned that if this condition is strengthened by requiring that the exact sequence

must split for any abelian group C, then it is well known that this is equivalent to A being free.

Caution: The converse of Whitehead's problem, namely that every free abelian group is Whitehead, is a well known group-theoretical fact. Some authors call Whitehead group only a non-free group A satisfying Ext1(A, Z) = 0. Whitehead's problem then asks: do Whitehead groups exist?

Shelah's proof

Saharon Shelah showed that, given the canonical ZFC axiom system, the problem is independent of the usual axioms of set theory. [1] More precisely, he showed that:

Since the consistency of ZFC implies the consistency of both of the following:

Whitehead's problem cannot be resolved in ZFC.

Discussion

J. H. C. Whitehead, motivated by the second Cousin problem, first posed the problem in the 1950s. Stein answered the question in the affirmative for countable groups. [2] Progress for larger groups was slow, and the problem was considered an important one in algebra for some years.

Shelah's result was completely unexpected. While the existence of undecidable statements had been known since Gödel's incompleteness theorem of 1931, previous examples of undecidable statements (such as the continuum hypothesis) had all been in pure set theory. The Whitehead problem was the first purely algebraic problem to be proved undecidable.

Shelah later showed that the Whitehead problem remains undecidable even if one assumes the continuum hypothesis. [3] [4] The Whitehead conjecture is true if all sets are constructible. That this and other statements about uncountable abelian groups are provably independent of ZFC shows that the theory of such groups is very sensitive to the assumed underlying set theory.

See also

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states that

there is no set whose cardinality is strictly between that of the integers and the real numbers,

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In mathematics, Suslin's problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC; Solovay & Tennenbaum (1971) showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.

<span class="mw-page-title-main">Saharon Shelah</span> Israeli mathematician

Saharon Shelah is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey.

In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large". The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more".

In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in Jensen (1972) that holds in the constructible universe and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility implies the existence of a Suslin tree.

The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as V = L. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms. Generalizations of this axiom are explored in inner model theory.

<span class="mw-page-title-main">Independence (mathematical logic)</span> Term in mathematical logic

In mathematical logic, independence is the unprovability of a sentence from other sentences.

In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.

A timeline of mathematical logic; see also history of logic.

In the mathematical field of set theory, the Solovay model is a model constructed by Robert M. Solovay in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue measurable. The construction relies on the existence of an inaccessible cardinal.

In mathematical set theory, Baumgartner's axiom (BA) can be one of three different axioms introduced by James Earl Baumgartner.

References

  1. 1 2 Shelah, S. (1974). "Infinite Abelian groups, Whitehead problem and some constructions". Israel Journal of Mathematics . 18 (3): 243–256. doi:10.1007/BF02757281. MR   0357114. S2CID   123351674.
  2. Stein, Karl (1951). "Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem". Mathematische Annalen. 123: 201–222. doi:10.1007/BF02054949. MR   0043219. S2CID   122647212.
  3. Shelah, S. (1977). "Whitehead groups may not be free, even assuming CH. I". Israel Journal of Mathematics . 28 (3): 193-203. doi: 10.1007/BF02759809 . hdl: 10338.dmlcz/102427 . MR   0469757. S2CID   123029484.
  4. Shelah, S. (1980). "Whitehead groups may not be free, even assuming CH. II". Israel Journal of Mathematics . 35 (4): 257–285. doi:10.1007/BF02760652. MR   0594332. S2CID   122336538.

Further reading