Witten zeta function

Last updated

In mathematics, the Witten zeta function, is a function associated to a root system that encodes the degrees of the irreducible representations of the corresponding Lie group. These zeta functions were introduced by Don Zagier who named them after Edward Witten's study of their special values (among other things). [1] [2] Note that in, [2] Witten zeta functions do not appear as explicit objects in their own right.

Contents

Definition

If is a compact semisimple Lie group, the associated Witten zeta function is (the meromorphic continuation of) the series

where the sum is over equivalence classes of irreducible representations of .

In the case where is connected and simply connected, the correspondence between representations of and of its Lie algebra, together with the Weyl dimension formula, implies that can be written as

where denotes the set of positive roots, is a set of simple roots and is the rank.

Examples

Abscissa of convergence

If is simple and simply connected, the abscissa of convergence of is , where is the rank and . This is a theorem due to Alex Lubotzky and Michael Larsen. [3] A new proof is given by Jokke Häsä and Alexander Stasinski [4] which yields a more general result, namely it gives an explicit value (in terms of simple combinatorics) of the abscissa of convergence of any "Mellin zeta function" of the form

where is a product of linear polynomials with non-negative real coefficients.

Singularities and values of the Witten zeta function associated to SU(3)

is absolutely convergent in , and it can be extended meromorphicaly in . Its singularities are in and all of those singularities are simple poles. [5] In particular, the values of are well defined at all integers, and have been computed by Kazuhiro Onodera. [6]

At , we have and

Let be a positive integer. We have

If a is odd, then has a simple zero at and

If a is even, then has a zero of order at and

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Bernoulli polynomials</span> Polynomial sequence

In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, a Dirichlet series is any series of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

<span class="mw-page-title-main">Riesz function</span> Mathematical function

In mathematics, the Riesz function is an entire function defined by Marcel Riesz in connection with the Riemann hypothesis, by means of the power series

<span class="mw-page-title-main">Series expansion</span> Expression of a function as an infinite sum of simpler functions

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators.

In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by

In mathematics, a Shintani zeta function or Shintani L-function is a generalization of the Riemann zeta function. They were first studied by Takuro Shintani. They include Hurwitz zeta functions and Barnes zeta functions.

<span class="mw-page-title-main">Modular lambda function</span> Symmetric holomorphic function

In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.

References

  1. Zagier, Don (1994), "Values of Zeta Functions and Their Applications", First European Congress of Mathematics Paris, July 6–10, 1992, Birkhäuser Basel, pp. 497–512, doi:10.1007/978-3-0348-9112-7_23, ISBN   9783034899123
  2. 1 2 Witten, Edward (October 1991). "On quantum gauge theories in two dimensions". Communications in Mathematical Physics . 141 (1): 153–209. doi:10.1007/bf02100009. ISSN   0010-3616. S2CID   121994550.
  3. Larsen, Michael; Lubotzky, Alexander (2008). "Representation growth of linear groups". Journal of the European Mathematical Society . 10 (2): 351–390. arXiv: math/0607369 . doi:10.4171/JEMS/113. ISSN   1435-9855. S2CID   9322647.
  4. Häsä, Jokke; Stasinski, Alexander (2019). "Representation growth of compact linear groups". Transactions of the American Mathematical Society . 372 (2): 925–980. arXiv: 1710.09112 . doi: 10.1090/tran/7618 .
  5. Romik, Dan (2017). "On the number of $n$-dimensional representations of $\operatorname{SU}(3)$, the Bernoulli numbers, and the Witten zeta function". Acta Arithmetica. 180 (2): 111–159. doi:10.4064/aa8455-3-2017. ISSN   0065-1036.
  6. Onodera, Kazuhiro (2014). "A functional relation for Tornheim's double zeta functions". Acta Arithmetica. 162 (4): 337–354. arXiv: 1211.1480 . doi:10.4064/aa162-4-2. ISSN   0065-1036. S2CID   119636956.