Writhe

Last updated

In knot theory, there are several competing notions of the quantity writhe, or . In one sense, it is purely a property of an oriented link diagram and assumes integer values. In another sense, it is a quantity that describes the amount of "coiling" of a mathematical knot (or any closed simple curve) in three-dimensional space and assumes real numbers as values. In both cases, writhe is a geometric quantity, meaning that while deforming a curve (or diagram) in such a way that does not change its topology, one may still change its writhe. [1]

Contents

In knot theory, the writhe is a property of an oriented link diagram. The writhe is the total number of positive crossings minus the total number of negative crossings.

A direction is assigned to the link at a point in each component and this direction is followed all the way around each component. For each crossing one comes across while traveling in this direction, if the strand underneath goes from right to left, the crossing is positive; if the lower strand goes from left to right, the crossing is negative. One way of remembering this is to use a variation of the right-hand rule.

Knot-crossing-plus.svg Knot-crossing-minus.svg
Positive
crossing
Negative
crossing

For a knot diagram, using the right-hand rule with either orientation gives the same result, so the writhe is well-defined on unoriented knot diagrams.

A Type I Reidemeister move changes the writhe by 1 Reidemeister move 1.svg
A Type I Reidemeister move changes the writhe by 1

The writhe of a knot is unaffected by two of the three Reidemeister moves: moves of Type II and Type III do not affect the writhe. Reidemeister move Type I, however, increases or decreases the writhe by 1. This implies that the writhe of a knot is not an isotopy invariant of the knot itself only the diagram. By a series of Type I moves one can set the writhe of a diagram for a given knot to be any integer at all.

Writhe of a closed curve

Writhe is also a property of a knot represented as a curve in three-dimensional space. Strictly speaking, a knot is such a curve, defined mathematically as an embedding of a circle in three-dimensional Euclidean space, . By viewing the curve from different vantage points, one can obtain different projections and draw the corresponding knot diagrams. Its writhe (in the space curve sense) is equal to the average of the integral writhe values obtained from the projections from all vantage points. [2] Hence, writhe in this situation can take on any real number as a possible value. [1]

In a paper from 1961, [3] Gheorghe Călugăreanu proved the following theorem: take a ribbon in , let be the linking number of its border components, and let be its total twist. Then the difference depends only on the core curve of the ribbon, [2] and

.

In a paper from 1959, [4] Călugăreanu also showed how to calculate the writhe Wr with an integral. Let be a smooth, simple, closed curve and let and be points on . Then the writhe is equal to the Gauss integral

.

Numerically approximating the Gauss integral for writhe of a curve in space

Since writhe for a curve in space is defined as a double integral, we can approximate its value numerically by first representing our curve as a finite chain of line segments. A procedure that was first derived by Michael Levitt [5] for the description of protein folding and later used for supercoiled DNA by Konstantin Klenin and Jörg Langowski [6] is to compute

,

where is the exact evaluation of the double integral over line segments and ; note that and . [6]

To evaluate for given segments numbered and , number the endpoints of the two segments 1, 2, 3, and 4. Let be the vector that begins at endpoint and ends at endpoint . Define the following quantities: [6]

Then we calculate [6]

Finally, we compensate for the possible sign difference and divide by to obtain [6]

In addition, other methods to calculate writhe can be fully described mathematically and algorithmically, some of them outperform method above (which has quadratic computational complexity, by having linear complexity). [6]

A simulation of an elastic rod relieving torsional stress by forming coils

Applications in DNA topology

DNA will coil when twisted, just like a rubber hose or a rope will, and that is why biomathematicians use the quantity of writhe to describe the amount a piece of DNA is deformed as a result of this torsional stress. In general, this phenomenon of forming coils due to writhe is referred to as DNA supercoiling and is quite commonplace, and in fact in most organisms DNA is negatively supercoiled. [1]

Any elastic rod, not just DNA, relieves torsional stress by coiling, an action which simultaneously untwists and bends the rod. F. Brock Fuller shows mathematically [7] how the “elastic energy due to local twisting of the rod may be reduced if the central curve of the rod forms coils that increase its writhing number”.

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In electromagnetism, there are two kinds of dipoles:

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In 1851, George Gabriel Stokes derived an expression, now known as Stokes' law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.

<span class="mw-page-title-main">Holonomy</span> Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

<span class="mw-page-title-main">Weierstrass–Enneper parameterization</span> Construction for minimal surfaces

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

<span class="mw-page-title-main">Biarc</span>

A biarc is a smooth curve formed from two circular arcs. In order to make the biarc smooth, the two arcs should have the same tangent at the connecting point where they meet.

<span class="mw-page-title-main">Fisher's noncentral hypergeometric distribution</span>

In probability theory and statistics, Fisher's noncentral hypergeometric distribution is a generalization of the hypergeometric distribution where sampling probabilities are modified by weight factors. It can also be defined as the conditional distribution of two or more binomially distributed variables dependent upon their fixed sum.

In mathematics, the Möbius energy of a knot is a particular knot energy, i.e., a functional on the space of knots. It was discovered by Jun O'Hara, who demonstrated that the energy blows up as the knot's strands get close to one another. This is a useful property because it prevents self-intersection and ensures the result under gradient descent is of the same knot type.

When an electromagnetic wave travels through a medium in which it gets attenuated, it undergoes exponential decay as described by the Beer–Lambert law. However, there are many possible ways to characterize the wave and how quickly it is attenuated. This article describes the mathematical relationships among:

In condensed matter physics, Lindhard theory is a method of calculating the effects of electric field screening by electrons in a solid. It is based on quantum mechanics and the random phase approximation. It is named after Danish physicist Jens Lindhard, who first developed the theory in 1954.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.

In differential geometry, a ribbon is the combination of a smooth space curve and its corresponding normal vector. More formally, a ribbon denoted by includes a curve given by a three-dimensional vector , depending continuously on the curve arc-length , and a unit vector perpendicular to at each point. Ribbons have seen particular application as regards DNA.

In differential geometry, the twist of a ribbon is its rate of axial rotation. Let a ribbon be composted of space curve , where is the arc length of , and the a unit normal vector, perpendicular at each point to . Since the ribbon has edges and , the twist measures the average winding of the edge curve around and along the axial curve . According to Love (1944) twist is defined by

An impulse vector is a mathematical tool to graphically design and analyze input shapers that could suppress residual vibration. The impulse vector can be applied for both undamped and underdamped systems, and for both positive and negative impulses in a unified way. The impulse vector makes it easy to obtain impulse time and magnitude of the input shaper graphically. A vector concept for an input shaper was first introduced by W. Singhose for undamped systems with positive impulses, and an impulse vector was first introduced by C.-G. Kang to generalize Singhose idea to underdamped systems with positive and negative impulses.

<span class="mw-page-title-main">Gheorghe Călugăreanu</span> Romanian mathematician

Gheorghe Călugăreanu was a Romanian mathematician, professor at Babeș-Bolyai University, and full member of the Romanian Academy.

References

  1. 1 2 3 Bates, Andrew (2005). DNA Topology. Oxford University Press. pp. 36–37. ISBN   978-0198506553.
  2. 1 2 Cimasoni, David (2001). "Computing the writhe of a knot". Journal of Knot Theory and Its Ramifications . 10 (387): 387–395. arXiv: math/0406148 . doi:10.1142/S0218216501000913. MR   1825964. S2CID   15850269.
  3. Călugăreanu, Gheorghe (1961). "Sur les classes d'isotopie des nœuds tridimensionnels et leurs invariants". Czechoslovak Mathematical Journal (in French). 11 (4): 588–625. doi:10.21136/CMJ.1961.100486. MR   0149378.
  4. Călugăreanu, Gheorghe (1959). "L'intégrale de Gauss et l'analyse des nœuds tridimensionnels" (PDF). Revue de Mathématiques Pure et Appliquées (in French). 4: 5–20. MR   0131846.
  5. Levitt, Michael (1986). "Protein Folding by Restrained Energy Minimization and Molecular Dynamics". Journal of Molecular Biology . 170 (3): 723–764. CiteSeerX   10.1.1.26.3656 . doi:10.1016/s0022-2836(83)80129-6. PMID   6195346.
  6. 1 2 3 4 5 6 Klenin, Konstantin; Langowski, Jörg (2000). "Computation of writhe in modeling of supercoiled DNA". Biopolymers . 54 (5): 307–317. doi:10.1002/1097-0282(20001015)54:5<307::aid-bip20>3.0.co;2-y. PMID   10935971.
  7. Fuller, F. Brock (1971). "The writhing number of a space curve". Proceedings of the National Academy of Sciences of the United States of America . 68 (4): 815–819. Bibcode:1971PNAS...68..815B. doi: 10.1073/pnas.68.4.815 . MR   0278197. PMC   389050 . PMID   5279522.

Further reading