Zero moment point

Last updated

The zero moment point (also referred to as zero-tilting moment point) is a concept related to the dynamics and control of legged locomotion, e.g., for humanoid or quadrupedal robots. It specifies the point with respect to which reaction forces at the contacts between the feet and the ground do not produce any moment in the horizontal direction, i.e., the point where the sum of horizontal inertia and gravity forces is zero. The concept assumes the contact area is planar and has sufficiently high friction to keep the feet from sliding.

Contents

Introduction

This concept was introduced to the legged locomotion community in January 1968 by Miomir Vukobratović and Davor Juričić at The Third All-Union Congress of Theoretical and Applied Mechanics in Moscow. [1] The term "zero moment point" itself was coined in works that followed between 1970 and 1972, and was widely and successfully reproduced in works from robotics groups around the world.[ examples needed ]

The zero moment point is an important concept in the motion planning for biped robots. Since they have only two points of contact with the floor and they are supposed to walk, "run" or "jump" (in the motion context), their motion has to be planned concerning the dynamical stability of their whole body. This is not an easy task, especially because the upper body of the robot (torso) has larger mass and inertia than the legs which are supposed to support and move the robot. This can be compared to the problem of balancing an inverted pendulum.

The trajectory of a walking robot is planned using the angular momentum equation to ensure that the generated joint trajectories guarantee the dynamical postural stability of the robot, which usually is quantified by the distance of the zero moment point in the boundaries of a predefined stability region. The position of the zero moment point is affected by the referred mass and inertia of the robot's torso, since its motion generally requires large angle torques to maintain a satisfactory dynamical postural stability.

One approach to solve this problem consists of using small trunk motions to stabilize the posture of the robot. However, some new planning methods are being developed to define the trajectories of the legs' links in such a way that the torso of the robot is naturally steered in order to reduce the ankle torque needed to compensate its motion. If the trajectory planning for the leg links is well-formed, then the zero moment point won't move out of the predefined stability region and the motion of the robot will become smoother, mimicking a natural trajectory.

Calculation

The resultant force of the inertia and gravity forces acting on a biped robot is expressed by the formula:

where is the total mass of the robot, is the acceleration of the gravity, is the center of mass and is the acceleration of the center of mass.

The moment in any point can be defined as:

where is the rate of angular momentum at the center of mass.

The Newton–Euler equations of the global motion of the biped robot can be written as:

where is the resultant of the contact forces at X and is the moment related with contact forces about any point X.

The Newton–Euler equations can be rewritten as:

so it's easier to see that we have:

These equations show that the biped robot is dynamically balanced if the contact forces and the inertia and gravity forces are strictly opposite.

If an axis is defined, where the moment is parallel to the normal vector from the surface about every point of the axis, then the zero moment point (ZMP) necessarily belongs to this axis, since it is by definition directed along the vector . The ZMP will then be the intersection between the axis and the ground surface such that:

with

where represents the ZMP.

Because of the opposition between the gravity and inertia forces and the contact forces mentioned before, the point (ZMP) can be defined by:

where is a point on the contact plane, e.g. the normal projection of the center of mass.

Applications

Zero moment point has been proposed as a metric that can be used to assess stability against tipping over of robots like the iRobot PackBot when navigating ramps and obstacles. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

<span class="mw-page-title-main">Moment of inertia</span> Scalar measure of the rotational inertia with respect to a fixed axis of rotation

The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.

<span class="mw-page-title-main">Trajectory</span> Path of a moving object

A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Inverted pendulum</span> Pendulum with center of mass above pivot

An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and falls over without additional help. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downward, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done either by applying a torque at the pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the pendulum, or by oscillating the pivot point vertically. A simple demonstration of moving the pivot point in a feedback system is achieved by balancing an upturned broomstick on the end of one's finger.

<span class="mw-page-title-main">Net force</span> Vector sum of all forces acting upon a particle or body

In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force.

<span class="mw-page-title-main">Barycentric coordinate system</span> Coordinate system that is defined by points instead of vectors

In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex. The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.

In classical mechanics, the Newton–Euler equations describe the combined translational and rotational dynamics of a rigid body.

<span class="mw-page-title-main">Hunting oscillation</span> Self-oscillation about an equilibrium that is usually unwanted

Hunting oscillation is a self-oscillation, usually unwanted, about an equilibrium. The expression came into use in the 19th century and describes how a system "hunts" for equilibrium. The expression is used to describe phenomena in such diverse fields as electronics, aviation, biology, and railway engineering.

<span class="mw-page-title-main">Stability derivatives</span>

Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change. For a defined "trim" flight condition, changes and oscillations occur in these parameters. Equations of motion are used to analyze these changes and oscillations. Stability and control derivatives are used to linearize (simplify) these equations of motion so the stability of the vehicle can be more readily analyzed.

<span class="mw-page-title-main">Legged robot</span> Type of mobile robot

Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, to provide locomotion. They are more versatile than wheeled robots and can traverse many different terrains, though these advantages require increased complexity and power consumption. Legged robots often imitate legged animals, such as humans or insects, in an example of biomimicry.

<span class="mw-page-title-main">Glossary of robotics</span> List of definitions of terms and concepts commonly used in the study of robotics

Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots. Robotics is related to the sciences of electronics, engineering, mechanics, and software.

Mechanics of planar particle motion is the analysis of the motion of particles gravitationally attracted to one another observed from non-inertial reference frames and the generalisation of this problem to planetary motion. This type of analysis is closely related to centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. The mechanics of planar particle motion fall in the general field of analytical dynamics, and helps determine orbits from the given force laws. This article is focused more on the kinematic issues surrounding planar motion, which are the determination of the forces necessary to result in a certain trajectory given the particle trajectory.

<span class="mw-page-title-main">Furuta pendulum</span>

The Furuta pendulum, or rotational inverted pendulum, consists of a driven arm which rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate in the vertical plane. It was invented in 1992 at Tokyo Institute of Technology by Katsuhisa Furuta and his colleagues. It is an example of a complex nonlinear oscillator of interest in control system theory. The pendulum is underactuated and extremely non-linear due to the gravitational forces and the coupling arising from the Coriolis and centripetal forces. Since then, dozens, possibly hundreds of papers and theses have used the system to demonstrate linear and non-linear control laws. The system has also been the subject of two texts.

<span class="mw-page-title-main">Magnetic levitation</span> Suspension of objects by magnetic force.

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.

Impedance control is an approach to dynamic control relating force and position. It is often used in applications where a manipulator interacts with its environment and the force position relation is of concern. Examples of such applications include humans interacting with robots, where the force produced by the human relates to how fast the robot should move/stop. Simpler control methods, such as position control or torque control, perform poorly when the manipulator experiences contacts. Thus impedance control is commonly used in these settings.

The term “soft robots” designs a broad class of robotic systems whose architecture includes soft elements, with much higher elasticity than traditional rigid robots. Articulated Soft Robots are robots with both soft and rigid parts, inspired to the muscloloskeletal system of vertebrate animals – from reptiles to birds to mammalians to humans. Compliance is typically concentrated in actuators, transmission and joints while structural stability is provided by rigid or semi-rigid links.

References

  1. Miomir Vukobratović, Davor Juričić, Contribution to the Synthesis of Biped Gait, IFAC Proceedings Volumes, Volume 2, Issue 4, Pages 469–478, 1968. ISSN   1474-6670.
  2. Roan, Philip R.; Aaron Burmeister; Amin Rahimi; Kevin Holz; David Hooper (2010). "Real-world validation of three tipover algorithms for mobile robots". 2010 IEEE International Conference on Robotics and Automation. pp. 4431–4436. doi:10.1109/ROBOT.2010.5509506. ISBN   978-1-4244-5038-1. S2CID   14969543.
  3. Hirai, Kazuo, et al. The development of Honda humanoid robot. Proceedings of the 1998 IEEE international conference on robotics and automation. Volume 2. IEEE, 1998. ISSN   1050-4729. doi : 10.1109/ROBOT.1998.677288.

Bibliography

  1. Kang, Hyun-jin, et al. Realization of biped walking on uneven terrain by new foot mechanism capable of detecting ground surface. Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, 2010. ISSN   1050-4729. doi : 10.1109/ROBOT.2010.5509348.