ASM International (society)

Last updated

ASM International
FoundedOctober 4, 1913 [1]
FounderWilliam Park Woodside
TypeProfessional Organization
FocusMetals, polymers, ceramics [2]
Location
Area served
Worldwide
MethodMembership, professional development, conferences, publications, local chapters
Members
20,000+
Key people
ASM Board of Trustees
Employees
50-100
Website https://www.asminternational.org/

ASM International, formerly known as the American Society for Metals, is an association of materials-centric engineers and scientists.

Contents

As the charitable arm of ASM, the ASM Materials Education Foundation also operates ASM Materials Camp in the summers for high school students and teachers. These camps are intended to educate the public about the materials field, and encourage young people to pursue careers in materials science and engineering. [3]

History

ASM has been in existence, under various names, since 1913, when it began as a local club in Detroit called the Steel Treaters Club. [4] During World War I, the Steel Treaters Club became the Steel Treating Research Society, with groups in Detroit, Chicago, and Cleveland. [4] After World War I, the Chicago group seceded and formed the American Steel Treaters Society. [4]

In 1920 the local chapters were reunified into the new American Society for Steel Treating (ASST). [4] The society expanded its technical scope beyond steel during the 1920s. In 1933 it became the American Society for Metals (ASM). [4]

Gradually the society expanded its geographic scope beyond the U.S. and its technical scope beyond metals to include other materials. [4] It became known as ASM International in 1986. [4] As of 2021, ASM claims 20,000 members worldwide.

ASM provides several information resources, including technical journals, books, and databases. ASM also hosts numerous international conferences each year, including ASM's Annual Meeting: International Materials, Applications, and Technologies Conference and Exposition (IMAT). [5]

Affiliate Societies

Six affiliate societies focused on specific areas of materials science also fall under the ASM umbrella:

Each society is led by volunteers, produces specific technical content for members, and holds its own international event.

Publications

Handbooks

Below is a table of the handbooks published by ASM International as of April 2023. [7] These handbooks are recognized as a standard reference in the field of materials science.

ASM Handbooks
Volume NumberTitle
1Properties and Selection: Irons, Steels, and High-Performance Alloys
1ACast Iron Science and Technology
2Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
2AAluminum Science and Technology
2BProperties and Selection of Aluminum Alloys
3Alloy Phase Diagrams
4ASteel Heat Treating Fundamentals and Processes
4BSteel Heat Treating Technologies
4CInduction Heating and Heat Treatment
4DHeat Treating of Irons and Steels
4EHeat Treating of Nonferrous Alloys
5Surface Engineering
5AThermal Spray Technology
5BProtective Organic Coatings
6Welding, Brazing, and Soldering
6AWelding Fundamentals and Processes
7Powder Metallurgy
8Mechanical Testing and Evaluation
9Metallography and Microstructures
10Materials Characterization
11Failure Analysis and Prevention
11AAnalysis and Prevention of Component and Equipment Failures
11BCharacterization and Failure Analysis of Plastics
12Fractography
13ACorrosion: Fundamentals, Testing, and Protection
13BCorrosion: Materials
13CCorrosion: Environments and Industries
14AMetalworking: Bulk Forming
14BMetalworking: Sheet Forming
15Casting
16Machining
17Nondestructive Evaluation of Materials
18Friction, Lubrication, and Wear Technology
19Fatigue and Fracture
20Materials Selection and Design
21Composites
22AFundamentals of Modeling for Metals Processing
22BMetals Process Simulation
23Materials for Medical Devices
23AAdditive Manufacturing in Biomedical Applications
24Additive Manufacturing Processes
24AAdditive Manufacturing Design and Applications
Desk EditionEngineered Materials Handbook Desk Edition
Desk EditionMetals Handbook Desk Edition

Journals

Technical journals published on behalf of ASM include: [8]

See also

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Metallurgy</span> Field of science that studies the physical and chemical behavior of metals

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the science and the technology of metals; that is, the way in which science is applied to the production of metals, and the engineering of metal components used in products for both consumers and manufacturers. Metallurgy is distinct from the craft of metalworking. Metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. A specialist practitioner of metallurgy is known as a metallurgist.

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an induction coil that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide. An induction heater consists of an electromagnet and an electronic oscillator that passes a high-frequency alternating current (AC) through the electromagnet. The rapidly alternating magnetic field penetrates the object, generating electric currents inside the conductor called eddy currents. The eddy currents flow through the resistance of the material, and heat it by Joule heating. In ferromagnetic and ferrimagnetic materials, such as iron, heat also is generated by magnetic hysteresis losses. The frequency of the electric current used for induction heating depends on the object size, material type, coupling, and the penetration depth.

<span class="mw-page-title-main">Die casting</span> Metal casting process

Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly to an injection mold during the process. Most die castings are made from non-ferrous metals, specifically zinc, copper, aluminium, magnesium, lead, pewter, and tin-based alloys. Depending on the type of metal being cast, a hot- or cold-chamber machine is used.

<span class="mw-page-title-main">Tungsten carbide</span> Hard, dense and stiff chemical compound

Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing shells and jewelry.

<span class="mw-page-title-main">Piping</span> System of pipes used to transport fluids

Within industry, piping is a system of pipes used to convey fluids from one location to another. The engineering discipline of piping design studies the efficient transport of fluid.

Fretting refers to wear and sometimes corrosion damage of loaded surfaces in contact while they encounter small oscillatory movements tangential to the surface. Fretting is caused by adhesion of contact surface asperities, which are subsequently broken again by the small movement. This breaking causes wear debris to be formed.

Pickling is a metal surface treatment used to remove impurities, such as stains, inorganic contaminants, and rust or scale from ferrous metals, copper, precious metals and aluminum alloys. A solution called pickle liquor, which usually contains acid, is used to remove the surface impurities. It is commonly used to descale or clean steel in various steelmaking processes.

<span class="mw-page-title-main">Stress corrosion cracking</span> Growth of cracks in a corrosive environment

Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC is highly chemically specific in that certain alloys are likely to undergo SCC only when exposed to a small number of chemical environments. The chemical environment that causes SCC for a given alloy is often one which is only mildly corrosive to the metal. Hence, metal parts with severe SCC can appear bright and shiny, while being filled with microscopic cracks. This factor makes it common for SCC to go undetected prior to failure. SCC often progresses rapidly, and is more common among alloys than pure metals. The specific environment is of crucial importance, and only very small concentrations of certain highly active chemicals are needed to produce catastrophic cracking, often leading to devastating and unexpected failure.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

6061 is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

7075 aluminium alloy (AA7075) is an aluminium alloy with zinc as the primary alloying element. It has excellent mechanical properties and exhibits good ductility, high strength, toughness, and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the alloys from the 2000 series. It is one of the most commonly used aluminium alloys for highly stressed structural applications and has been extensively used in aircraft structural parts.

<span class="mw-page-title-main">Nickel titanium</span> High-durability alloy

Nickel titanium, also known as Nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., Nitinol 55 and Nitinol 60. It exhibits the shape memory effect and superelasticity at different temperatures.

A cryogenic treatment is the process of treating workpieces to cryogenic temperatures in order to remove residual stresses and improve wear resistance in steels and other metal alloys, such as aluminum. In addition to seeking enhanced stress relief and stabilization, or wear resistance, cryogenic treatment is also sought for its ability to improve corrosion resistance by precipitating micro-fine eta carbides, which can be measured before and after in a part using a quantimet.

<span class="mw-page-title-main">Parts cleaning</span>

Parts cleaning is essential in many industrial processes, as a prelude to surface finishing or to protect sensitive components. Electroplating is particularly sensitive to part cleanliness, since molecular layers of oil can prevent the coating adhesion. ASTM B322 is a standard guide for cleaning metals prior to electroplating. Cleaning processes include solvent cleaning, hot alkaline detergent cleaning, electro-cleaning, and acid etch. The most common industrial tests for cleanliness of machinery is the water-break test, in which the surface is thoroughly rinsed and vertically held. A quantitative measurement for this parameter is the contact angle. Hydrophobic contaminants such as oils cause the water to bead and break up, allowing the water to drain rapidly. Perfectly clean metal surfaces are hydrophilic and will keep an unbroken sheet of water that does not bead up or drain off. ASTM F22 describes a version of this test. This test does not detect hydrophilic contaminants, but the electroplating process can displace these easily since the solutions are water-based. Surfactants such as soap reduce the sensitivity of the test, so these must be thoroughly rinsed off.

<span class="mw-page-title-main">Ceramography</span> Preparation and study of ceramics with optical instruments

Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 µm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentations. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.

Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.

Govindan Sundararajan is an Indian materials engineer, known for his contributions in the areas of Surface Engineering and Ballistics. The Government of India honoured him, in 2014, by awarding him the Padma Shri, the fourth highest civilian award, for his contributions to the fields of science and technology.

David Dye is a Professor of Metallurgy at Imperial College London. Professor Dye specialises in fatigue and micromechanics of aerospace and nuclear materials, mainly Ni/Co superalloys, Titanium, TWIP steel, and Zirconium alloys.

References

  1. "History of ASM". Archived from the original on July 7, 2022. Retrieved January 23, 2014.
  2. "For Media". Archived from the original on September 27, 2014. Retrieved January 23, 2014.
  3. "ASM International camp in Russell is a hit". Archived from the original on February 2, 2014. Retrieved January 23, 2014.
  4. 1 2 3 4 5 6 7 ASM International, History of ASM, archived from the original on July 7, 2022, retrieved May 18, 2014.
  5. "Events". ASM International. ASM International. Archived from the original on December 4, 2022. Retrieved December 4, 2022.
  6. "Affiliate Societies". ASM International. ASM International. Archived from the original on December 4, 2022. Retrieved December 4, 2022.
  7. "ASM Handbooks". ASM International. ASM International. Archived from the original on November 28, 2022. Retrieved April 15, 2023.
  8. "Journals". ASM International. ASM International. Archived from the original on December 4, 2022. Retrieved December 30, 2022.