ATMP

Last updated
ATMP
ATMP.png
Names
Preferred IUPAC name
[Nitrilotris(methylene)]tris(phosphonic acid)
Other names
Tris(phosphonomethyl)amine; Nitrilotrimethylphosphonic acid; Aminotris(methylphosphonic acid); ATMP; NTMP
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.026.496 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 229-146-5
PubChem CID
UNII
  • InChI=1S/C3H12NO9P3/c5-14(6,7)1-4(2-15(8,9)10)3-16(11,12)13/h1-3H2,(H2,5,6,7)(H2,8,9,10)(H2,11,12,13) Yes check.svgY
    Key: YDONNITUKPKTIG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C3H12NO9P3/c5-14(6,7)1-4(2-15(8,9)10)3-16(11,12)13/h1-3H2,(H2,5,6,7)(H2,8,9,10)(H2,11,12,13)
    Key: YDONNITUKPKTIG-UHFFFAOYAN
  • O=P(O)(O)CN(CP(=O)(O)O)CP(=O)(O)O
Properties
C3H12NO9P3
Molar mass 299.048 g·mol−1
AppearanceWhite solid
Density 1.33 g/cm3 (20 °C)
Melting point 200 °C (392 °F; 473 K) decomposes
61 g/100 mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

ATMP or aminotris(methylenephosphonic acid) is a phosphonic acid with chemical formula N(CH2PO3H2)3. It is a colorless solid. Its conjugate bases, such as [N(CH2PO3H)3]3-, have chelating properties.

Contents

ATMP can be synthesized from the Mannich-type reaction of ammonia, formaldehyde, and phosphorous acid, in a manner similar to the Kabachnik–Fields reaction. [1] [2]

Properties

ATMP has good antiscale performance. [3] [4] It is related structurally to nitrilotriacetic acid. [5]

Applications

Related Research Articles

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">1,10-Phenanthroline</span> Heterocyclic organic compound

1,10-Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. The 1,10 refer to the location of the nitrogen atoms that replace CH's in the hydrocarbon called phenanthrene.

<span class="mw-page-title-main">Tropinone</span> Chemical compound

Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone.

In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl functional group by formaldehyde and a primary or secondary amine or ammonia. The final product is a β-amino-carbonyl compound also known as a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich.

<span class="mw-page-title-main">Phosphorous acid</span> Chemical compound (H3PO4)

Phosphorous acid is the compound described by the formula H3PO3. This acid is diprotic, not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds. Organic derivatives of phosphorous acid, compounds with the formula RPO3H2, are called phosphonic acids.

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

<span class="mw-page-title-main">Petasis reaction</span>

The Petasis reaction is the multi-component reaction of an amine, a carbonyl, and a vinyl- or aryl-boronic acid to form substituted amines.

<span class="mw-page-title-main">Lead(IV) acetate</span> Organometallic compound (Pb(C2H3O2)4)

Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.

<span class="mw-page-title-main">Hydroxamic acid</span> Organic compounds of the form –C(=O)N(OH)–

In organic chemistry, hydroxamic acids are a class of organic compounds having a general formula R−C(=O)−N(−OH)−R' bearing the functional group −C(=O)−N(−OH)−, where R and R' are typically organyl groups or hydrogen. They are amides wherein the nitrogen atom has a hydroxyl substituent. They are often used as metal chelators.

<span class="mw-page-title-main">Organocatalysis</span> Method in organic chemistry

In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon, hydrogen, sulfur and other nonmetal elements found in organic compounds. Because of their similarity in composition and description, they are often mistaken as a misnomer for enzymes due to their comparable effects on reaction rates and forms of catalysis involved.

Trimethylsilanol (TMS) is an organosilicon compound with the formula (CH3)3SiOH. The Si centre bears three methyl groups and one hydroxyl group. It is a colourless volatile liquid.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indoles are derivatives of indole where one or more H's have been replaced by other groups. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

<i>N</i>-<i>tert</i>-Butylbenzenesulfinimidoyl chloride Chemical compound

N-tert-Butylbenzenesulfinimidoyl chloride is a useful oxidant for organic synthesis reactions. It is a good electrophile, and the sulfimide S=N bond can be attacked by nucleophiles, such as alkoxides, enolates, and amide ions. The nitrogen atom in the resulting intermediate is basic, and can abstract an α-hydrogen to create a new double bond.

<span class="mw-page-title-main">Borinic acid</span> Chemical compound

Borinic acid, also known as boronous acid, is an oxyacid of boron with formula H
2
BOH
. Borinate is the associated anion of borinic acid with formula H
2
BO
; however, being a Lewis acid, the form in basic solution is H
2
B(OH)
2
.

Metal-catalyzed C–H borylation reactions are transition metal catalyzed organic reactions that produce an organoboron compound through functionalization of aliphatic and aromatic C–H bonds and are therefore useful reactions for carbon–hydrogen bond activation. Metal-catalyzed C–H borylation reactions utilize transition metals to directly convert a C–H bond into a C–B bond. This route can be advantageous compared to traditional borylation reactions by making use of cheap and abundant hydrocarbon starting material, limiting prefunctionalized organic compounds, reducing toxic byproducts, and streamlining the synthesis of biologically important molecules. Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups. Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general formula (RO)2B-B(OR)2. For example, bis(pinacolato)diboron (B2Pin2), and bis(catecholato)diborane (B2Cat2) are common boron sources of this general formula.

Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol.

Rearrangements, especially those that can participate in cascade reactions, such as the aza-Cope rearrangements, are of high practical as well as conceptual importance in organic chemistry, due to their ability to quickly build structural complexity out of simple starting materials. The aza-Cope rearrangements are examples of heteroatom versions of the Cope rearrangement, which is a [3,3]-sigmatropic rearrangement that shifts single and double bonds between two allylic components. In accordance with the Woodward-Hoffman rules, thermal aza-Cope rearrangements proceed suprafacially. Aza-Cope rearrangements are generally classified by the position of the nitrogen in the molecule :

<span class="mw-page-title-main">Bispidine</span> Chemical compound

Bispidine (3,7-diazabicyclo[3.3.1]nonane) is an organic compound that is classified as a bicyclic diamine. Although synthetic, it is related structurally to natural alkaloid sparteine. It is a white crystalline solid. It has been widely investigated as a chelating agent. Many derivatives are known.

<span class="mw-page-title-main">Nitro-Mannich reaction</span>

The nitro-Mannich reaction is the nucleophilic addition of a nitroalkane to an imine, resulting in the formation of a beta-nitroamine. With the reaction involving the addition of an acidic carbon nucleophile to a carbon-heteroatom double bond, the nitro-Mannich reaction is related to some of the most fundamental carbon-carbon bond forming reactions in organic chemistry, including the aldol reaction, Henry reaction and Mannich reaction.

References

  1. Petrov, K. A.; Maklyaev, F. L.; Bliznyuk, N. K (1959). "Synthesis of aminodiphosphonates and aminotriphosphonates". Zhurnal Obshchei Khimii. 29: 591-4.
  2. Moedritzer, Kurt; Irani, Riyad R. (1966). "The Direct Synthesis of α-Aminomethylphosphonic Acids. Mannich-Type Reactions with Orthophosphorous Acid". The Journal of Organic Chemistry. 31 (5): 1603. doi:10.1021/jo01343a067.
  3. Labjar, Najoua; Lebrini, Mounim; Bentiss, Fouad; Chihib, Nour-Eddine; Hajjaji, Souad El; Jama, Charafeddine (2010). "Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid". Materials Chemistry and Physics. 119 (1–2): 330–336. doi:10.1016/j.matchemphys.2009.09.006.
  4. Tang, Yongming; Yang, Wenzhong; Yin, Xiaoshuang; Liu, Ying; Yin, Pengwei; Wang, Jintang (2008). "Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP". Desalination. 228 (1–3): 55–60. doi:10.1016/j.desal.2007.08.006.
  5. Cabeza, Aurelio; Ouyang, Xiang; Sharma, C. V. Krishnamohan; Aranda, Miguel A. G.; Bruque, Sebastian; Clearfield, Abraham (2002-05-01). "Complexes Formed between Nitrilotris(methylenephosphonic acid) and M 2+ Transition Metals: Isostructural Organic−Inorganic Hybrids". Inorganic Chemistry. 41 (9): 2325–2333. doi:10.1021/ic0110373. ISSN   0020-1669.}}