Accepted and experimental value

Last updated

In science, and most specifically chemistry, the accepted value denotes a value of a substance accepted by almost all scientists and the experimental value denotes the value of a substance's properties found in a localized lab. [1]

See also

Related Research Articles

Analytical chemistry Study of the separation, identification, and quantification of the chemical components of materials

Analytical chemistry studies and uses instruments and methods used to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.

Chemistry scientific discipline

Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

The specific heat capacity,(symbol Cp) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample. Informally, it is the amount of energy that must be added, in the form of heat, to one unit of mass of the substance in order to cause an increase of one unit in its temperature. The SI unit of specific heat is joule per kelvin and kilogram, J/(K kg). For example, at a temperature of 25 °C, the heat required to raise the temperature of 1 kg of water by 1 K is 4179.6 joules, meaning that the specific heat of water is 4179.6 J·kg−1·K−1.

Avogadro constant Fundamental physical constant (symbols: L,Nᴀ) representing the molar number of entities

The Avogadro constant (NA or L) is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. Its SI unit is the reciprocal mole, and it is defined as NA = 6.02214076×1023 mol−1. It is named after the Italian scientist Amedeo Avogadro.

The dalton or unified atomic mass unit is a unit of mass widely used in physics and chemistry. It is defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted mu, is defined identically, giving mu = m(12C)/12 = 1 Da.

An acid dissociation constant, Ka, is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

In chemistry, the molar mass is defined as the mass of a sample of that compound divided by the amount of substance in that sample, measured in moles. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities.

Heat capacity extensive physical property of the amount of energy required to increase temperature

Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to a given mass of a material to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K).

The electron affinity (Eea) of an atom or molecule is defined as the amount of energy released when an electron is attached to a neutral atom or molecule in the gaseous state to form a negative ion.

In chemistry, a mixture is a material made up of two or more different substances which are physically combined. A mixture is the physical combination of two or more substances in which the identities are retained and are mixed in the form of solutions, suspensions and colloids.

The plus–minus sign, ± is a mathematical symbol with multiple meanings.

The standard atmosphere is a unit of pressure defined as 101325 Pa. It is sometimes used as a reference or standard pressure. It is approximately equal to the atmospheric pressure at sea level.

In chemistry, the amount of substance in a given sample of matter is defined as the number of discrete atomic-scale particles in it divided by the Avogadro constant NA. In a truly atomistic view, the amount of substance is simply the number of particles that constitute the substance. The particles or entities may be molecules, atoms, ions, electrons, or other, depending on the context. The value of the Avogadro constant NA has been defined as 6.02214076×1023 mol−1. In the truly atomistic view, 1 mol = 6.02214076×1023 particles (the Avogadro number) and therefore the conversion constant is simply NA = 1. The amount of substance is sometimes referred to as the chemical amount.

The molar heat capacity of a chemical substance is the amount of energy that must be added, in the form of heat, to one mole of the substance in order to cause an increase of one unit in its temperature. Alternatively, it is the heat capacity of a sample of the substance divided by the amount of substance of the sample; or also the specific heat capacity of the substance times its molar mass. The SI unit of specific heat is joule per kelvin per mole, J⋅K−1⋅mol−1.

Dissociation in chemistry and biochemistry is a general process in which molecules (or ionic compounds such as salts, or complexes) separate or split into smaller particles such as atoms, ions, or radicals, usually in a reversible manner. For instance, when an acid dissolves in water, a covalent bond between an electronegative atom and a hydrogen atom is broken by heterolytic fission, which gives a proton (H+) and a negative ion. Dissociation is the opposite of association or recombination.

Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities. Those Greek letters which have the same form as Latin letters are rarely used: capital A, B, E, Z, H, I, K, M, N, O, P, T, Y, X. Small ι, ο and υ are also rarely used, since they closely resemble the Latin letters i, o and u. Sometimes font variants of Greek letters are used as distinct symbols in mathematics, in particular for ε/ϵ and π/ϖ. The archaic letter digamma (Ϝ/ϝ/ϛ) is sometimes used.

Detection limit for a given analytical procedure, concentration or quantity derived from the smallest measure that can be detected with reasonable certainty

In analytical chemistry, the detection limit, lower limit of detection, or LOD, often mistakenly confused with the analytical sensitivity, is the lowest quantity of a substance that can be distinguished from the absence of that substance with a stated confidence level. The detection limit is estimated from the mean of the blank, the standard deviation of the blank, the slope of the calibration plot and a defined confidence factor. Another consideration that affects the detection limit is the accuracy of the model used to predict concentration from the raw analytical signal.

ISO 31-8 is the part of international standard ISO 31 that defines names and symbols for quantities and units related to physical chemistry and molecular physics.

<i>On the Equilibrium of Heterogeneous Substances</i>

In the history of thermodynamics, On the Equilibrium of Heterogeneous Substances is a 300-page paper written by American chemical physicist Willard Gibbs. It is one of the founding papers in thermodynamics, along with German physicist Hermann von Helmholtz's 1882 paper "Thermodynamik chemischer Vorgänge." Together they form the foundation of chemical thermodynamics as well as a large part of physical chemistry.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

References

  1. Wilbram; Staley; Matta; Waterman (2005). Chemistry. New Jersey: Prentice Hall.