Airborne Launch Assist Space Access

Last updated

Airborne Launch Assist Space Access, or DARPA ALASA is a canceled program of the US defense technology agency DARPA "designed to produce a rocket capable of launching a 100-pound satellite into low Earth orbit for less than $1 million." [1] The program was conceived, then announced in 2011, and funded development work began in 2012. The project was terminated in late 2015.

Contents

Background

Traditional launch methods of satellites are too costly to put small payloads into orbit without a larger payload accompanying it to make the launch worth the expense. Current launches of sub-100-pound satellites are performed as "piggyback payloads" on launches of much larger spacecraft, usually headed for geostationary orbit, and are released at the altitude of the primary payload. In addition, range costs of operating from ground-based infrastructure have escalated as they have aged, accounting for up to 35 percent of the launch cost. This restricts the number of light satellite launches to 10–12 per year, which could be increased if small payloads could be launched into space affordably and without ground range constraints. Air-launching satellites was first seriously considered during the 1950s and 1960s, but small payloads in the 100-pound class at the time did not have effective capabilities, so the method was overlooked. The first air-launched rocket to put a satellite into orbit was the Orbital Sciences Corporation Pegasus, which did it on 13 June 1990; however, it is currently deployed from a heavily modified and expensive Lockheed L-1011 airliner. The ALASA program's objective is to use an unmodified aircraft platform (except for software) that does not have to be dedicated to the mission to place a 100 lb satellite into orbit that requires only 24 hours notice to integrate and launch the payload, with the ability to re-plan the launch in flight and relocate the aircraft to any civilian airport or military airfield in a crisis situation, while using onboard GPS/inertial position reporting rather than ground-based radar tracking. [2]

History

A program solicitation was announced in 2011, and six companies were awarded contracts in July 2012. The six awardees who signed phase 1 contracts with DARPA included: [1]

In the first phase, Boeing, Lockheed Martin and Virgin Galactic were funded to explore different ALASA system concepts while Northrop Grumman, Space Information Laboratories and Ventions were contracted to work on enabling technologies that could be used by any or all of the system teams. [3]

In December 2012, DARPA announced that the ALASA program would provide the launch vehicle booster for another DARPA program that is intending to release a "constellation of 24 micro-satellites (~20 kilograms (44 lb) range) each with 1-meter imaging resolution." [4]

In May 2013, DARPA requested US$40 million for a second year of ALASA program funding in spring 2013. [5]

In March 2014, Boeing won the large US$32–104 million phase 2 ALASA contract from DARPA. [6] Boeing will use their F-15E Strike Eagle fighter to carry the ALASA rocket up to 12,000 m (39,000 ft), then release the 7.3 m (24 ft) rocket to ignite and carry itself into orbit. Using a modified fighter-jet to launch the rocket would increase satellite launch sites from four locations (Cape Canaveral Air Force Station, Florida; Vandenberg Air Force Base, California; Wallops Flight Facility, Virginia; and Kodiak Island, Alaska) to any available runway. The cost to put a 45 kg (99 lb) microsatellite into orbit is targeted at $1 million, a decrease of 66 percent. A demonstration launch was hoped for in FY 2015. [7]

The F-15E launch vehicle would have required no modifications to launch the ALASA payload, not even software, because the rocket will use the same communications protocols as a typically mounted weapons system. This enables the aircraft to continue flying other missions as a cost benefit over being specialized. The rocket will also feature new design technologies to lower complexity and costs. It will be powered by a monopropellant, a combination of nitrous oxide and acetylene, and mixed together in one propellant tank slightly below room temperature; the propellant choice is a dramatic simplification of the complexity of the rocket vehicle. Rocket design is also unconventional, mounting the four engines for the first stage at the front rather than rear. DARPA plans to develop a second, smaller launch system called the Small Air Launch Vehicle to Orbit (SALVO) to understand operations cost, demonstrate new technologies like battery-powered pumps for the rocket's engines, and provide overall program before ALASA is launched. SALVO was planned to launch in spring 2015, six to nine months before the first ALASA flight in late 2015. 12 flights were to be conducted through mid-2016 from Eglin Air Force Base, Florida over the Atlantic Ocean. [8]

By June 2015, DARPA and the Air Force had reportedly began SALVO flights, potentially having already commenced them to counter Chinese and Russian electronic and infrared surveillance; this could mean ALASA would give the U.S. a "stealth satellite launch" capability. [9]

Budget

The program had a budget of "US$46 million for the 18-month first phase through September 2013, when [DARPA] planned another competition to select at least one team to conduct up to 36 launches in 2015 [in order to] to demonstrate [the Alasa system] at a persuasive scale." [3] US$40 million has been requested for the second year. [5]

Competition

After DARPA announced in December 2012 that the ALASA air-launched microsat launch vehicle would be chosen to launch the DARPA SeeMe program micro-satellites, some questions arose as to why other commercial options currently in development were not considered, such as the Virgin Galactic LauncherOne and the XCOR Aerospace Lynx. [4]

Termination

DARPA terminated the program in late 2015, due to safety concerns with the unique monopropellant, NA-7, which exploded in two ground tests. It was reported that development of the propellant would continue, as would efforts to apply technologies developed in the program. [10]

See also

Related Research Articles

Expendable launch system Launch system that uses a single use launch vehicle

An expendable launch system is a launch vehicle that can be launched only once, after which its components are either destroyed during reentry or discarded in space. ELVs typically consist of several rocket stages that are discarded sequentially as their fuel is exhausted and the vehicle gains altitude and speed. As of 2022, most satellites and human spacecraft are currently launched on ELVs. ELVs are simpler in design than reusable launch systems and therefore may have a lower production cost. Furthermore, an ELV can use its entire fuel supply to accelerate its payload, offering greater payloads. ELVs are proven technology in widespread use for many decades.

Delta IV Active expendable launch system in the Delta rocket family

Delta IV is a group of five expendable launch systems in the Delta rocket family introduced in the early 2000s. Originally designed by Boeing's Defense, Space and Security division for the Evolved Expendable Launch Vehicle (EELV) program, the Delta IV became a United Launch Alliance (ULA) product in 2006. The Delta IV is primarily a launch vehicle for United States Air Force (USAF) military payloads, but has also been used to launch a number of United States government non-military payloads and a single commercial satellite.

Shavit 2 Small lift launch vehicle produced by Israel from 1982 onwards

Shavit 2 is a small lift launch vehicle produced by Israel from 1982 onwards, to launch satellites into low Earth orbit. It was first launched on 19 September 1988, making Israel the eighth nation to have an orbital launch capability after the USSR, United States, France, Japan, People's Republic of China, United Kingdom, and India.

Pegasus is an air-launched launch vehicle developed by Orbital Sciences Corporation (OSC) and now built and launched by Northrop Grumman. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remains active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft), and its first stage has a wing and a tail to provide lift and attitude control while in the atmosphere. Notably, the first stage does not have a thrust vector control (TVC) system.

Orbital Sciences Corporation was an American company specializing in the design, manufacture and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems to create a new company called Orbital ATK, Inc., which in turn was purchased by Northrop Grumman in 2018. The remnants of the former Orbital Sciences Corporation today are a subsidiary of Northrop Grumman known as Northrop Grumman Space Systems.

<span class="mw-page-title-main">Boeing X-37</span> Reusable robotic spaceplane

The Boeing X-37, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft. It is boosted into space by a launch vehicle, then re-enters Earth's atmosphere and lands as a spaceplane. The X-37 is operated by the United States Space Force, and was previously operated by Air Force Space Command until 2019 for orbital spaceflight missions intended to demonstrate reusable space technologies. It is a 120-percent-scaled derivative of the earlier Boeing X-40. The X-37 began as a NASA project in 1999, before being transferred to the United States Department of Defense in 2004.

Air launch

Air launching is the practice of releasing a rocket, missile, parasite aircraft or other aircraft payload from a mother ship or launch aircraft. The payload craft or missile is often tucked under the wing of the larger mother ship and then "dropped" while in flight. It may also be stored within a bomb bay, beneath the main fuselage or even on the back of the carrier aircraft, as in the case of the D-21 drone. Air launching provides several advantages over ground launching, giving the smaller craft an altitude and range boost, while saving it the weight of the fuel and equipment needed to take off on its own.

Launch vehicle Rocket used to carry an object into space

A launch vehicle or carrier rocket can carry a payload from the surface to outer space, such as spacecraft and satellites. They are often operated with extensive infrastructure such as launch pads, vehicle assembly, fueling systems, range safety, etc. The difficulties of spaceflight demand launch vehicles to be engineered with very advanced aerodynamics and technologies – a big contributor to the vehicle's expensive operating cost.

Small satellite Satellites of low mass and size, usually under 500 kg

A small satellite, miniaturized satellite, or smallsat is a satellite of low mass and size, usually under 1,200 kg (2,600 lb). While all such satellites can be referred to as "small", different classifications are used to categorize them based on mass. Satellites can be built small to reduce the large economic cost of launch vehicles and the costs associated with construction. Miniature satellites, especially in large numbers, may be more useful than fewer, larger ones for some purposes – for example, gathering of scientific data and radio relay. Technical challenges in the construction of small satellites may include the lack of sufficient power storage or of room for a propulsion system.

Space Shuttle design process Development program of the NASA Space Shuttle

Before the Apollo 11 Moon landing in 1969, NASA began studies of Space Shuttle designs as early as October 1968. The early studies were denoted "Phase A", and in June 1970, "Phase B", which were more detailed and specific. The primary intended use of the Space Shuttle was supporting the future space station, ferrying a minimum crew of four and about 20,000 pounds (9,100 kg) of cargo, and able to be rapidly turned around for future flights.

DARPA Falcon Project US program to develop a hypersonic weapon

The DARPA Falcon Project is a two-part joint project between the Defense Advanced Research Projects Agency (DARPA) and the United States Air Force (USAF) and is part of Prompt Global Strike. One part of the program aims to develop a reusable, rapid-strike Hypersonic Weapon System (HWS), now retitled the Hypersonic Cruise Vehicle (HCV), and the other is for the development of a launch system capable of accelerating an HCV to cruise speeds, as well as launching small satellites into Earth orbit. This two-part program was announced in 2003 and continued into 2006.

<span class="mw-page-title-main">Vandenberg Space Launch Complex 6</span> Launch pad

Space Launch Complex 6 at Vandenberg Space Force Base in California is a launch pad and support area. The site was originally developed for Titan III rockets and the Manned Orbiting Laboratory, but these were cancelled before construction of SLC-6 was complete. The complex was later rebuilt to serve as the west coast launch site for the Space Shuttle, but went unused due to budget, safety and political considerations. The pad was subsequently used for several Athena rocket launches before being modified to support the Delta IV launch vehicle family, which have used the pad since 2006.

United Launch Alliance Joint venture of Lockheed Martin and Boeing

United Launch Alliance (ULA), legally United Launch Alliance, LLC, is an American spacecraft launch service provider that manufactures and operates a number of rocket vehicles that are capable of launching spacecraft into orbits around Earth and to other bodies in the Solar System. The company, which is a joint venture between Lockheed Martin Space and Boeing Defense, Space & Security, was formed in December 2006. Launch customers of the United Launch Alliance include the Department of Defense (DoD), NASA, and other organizations.

Inertial Upper Stage Space launch system

The Inertial Upper Stage (IUS), originally designated the Interim Upper Stage, was a two-stage, solid-fueled space launch system developed by Boeing for the United States Air Force beginning in 1976 for raising payloads from low Earth orbit to higher orbits or interplanetary trajectories following launch aboard a Titan 34D or Titan IV rocket as its upper stage, or from the payload bay of the Space Shuttle as a space tug.

Air-launch-to-orbit Method of launching rockets at altitude from a conventional horizontal-takeoff aircraft

Air launch to orbit is the method of launching rockets at altitude from a conventional horizontal-takeoff aircraft, to carry satellites to low Earth orbit. It is a follow-on development of air launches of experimental aircraft that began in the late 1940s. This method, when employed for orbital payload insertion, presents significant advantages over conventional vertical rocket launches, particularly because of the reduced mass, thrust and cost of the rocket.

Orbital propellant depot Cache of propellant that is placed in orbit to allow spacecraft to refuel in space

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many different depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

The Boeing Small Launch Vehicle, or SLV, is an air-launched three-stage-to-orbit launch vehicle concept aimed to launch small payloads of 100 pounds (45 kg) into low Earth orbit. The program is proposed to drive down launch costs for small satellites as low as US$300,000 per launch ($7,000/kg) and could be fielded by 2020.

LauncherOne Two-stage, air-launched rocket by Virgin Orbit

LauncherOne is a two-stage orbital launch vehicle developed and flown by Virgin Orbit that began operational flights in 2021, after being in development from 2007 to 2020. It is an air-launched rocket, designed to carry smallsat payloads of up to 300 kg (660 lb) into Sun-synchronous orbit (SSO), following air launch from a carrier aircraft at high altitude. The rocket is carried to the upper atmosphere on a modified Boeing 747-400, named Cosmic Girl, and released over the Pacific Ocean. Initial work on the program was done by Virgin Galactic, another Virgin Group subsidiary, before a separate entity — Virgin Orbit — was formed in 2017 to complete development and operate the launch service provider business as a separate entity from the passenger-carrying Virgin Galactic business.

The DARPA XS-1 was an experimental spaceplane/booster with the planned capability to deliver small satellites into orbit for the U.S. Military. It was reported to be designed to be reusable as frequently as once a day, with a stated goal of doing so for 10 days straight. The XS-1 was intended to directly replace the first stage of a multistage rocket by taking off vertically and flying to hypersonic speed and high suborbital altitude, enabling one or more expendable upper stages to separate and deploy a payload into low Earth orbit. The XS-1 would then return to Earth, where it could ostensibly be serviced fast enough to repeat the process at least once every 24 hours.

NovaWurks

NovaWurks is a seed-stage startup company that is developing a set of novel small satellite technologies that will enable new capabilities for commercial operations in space. NovaWurks is located in Los Alamitos, California. In 2013, the company received an important contract worth up to US$46,200,000 from DARPA for components for the Phoenix Project.

References

  1. 1 2 3 4 Messier, Doug (July 2, 2012). "DARPA Awards 6 Small Airborne Launch Vehicle Contracts". Parabolic Arc. Retrieved November 29, 2012.
  2. Darpa Revisits Air Launch With Focus On Cost – Aviationweek.com, 25 July 2012
  3. 1 2 Warwick, Graham (June 25, 2012). "Darpa Revisits Air Launch With Focus On Cost". Aviation Week. Retrieved November 29, 2012.
  4. 1 2 Lindsey, Clark (December 19, 2012). "DARPA developing microsat constellation orbited with air-launch system" . NewSpace Watch. Retrieved December 22, 2012.
  5. 1 2 Ferster, Warren (May 17, 2013). "DARPA Cancels Formation-flying Satellite Demo". Space News. Archived from the original on November 1, 2013. Retrieved November 1, 2013.
  6. DARPA Picks Boeing To Demonstrate Airborne Launcher Concept | SpaceNews.com
  7. Boeing Targets 66 Percent Launch Cost Reduction with ALASA - Spacenews.com, 28 March 2014
  8. Air launch, big and small – Thespacereview.com, 30 June 2014
  9. Airborne 'stealth launch' of CubeSat said to be underway - Defensesystems.com, 19 June 2015
  10. Mike Gruss (November 30, 2015). "DARPA Scraps Plan To Launch Small Sats from F-15 Fighter Jet". spacenews.com. Retrieved December 1, 2015.