Amplitude

Last updated

The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. [1]

Contents

Definitions

A sinusoidal curve
Peak amplitude (
u
^
{\displaystyle \scriptstyle {\hat {u}}}
),
Peak-to-peak amplitude (
2
u
^
{\displaystyle \scriptstyle 2{\hat {u}}}
),
Root mean square amplitude (
u
^
/
2
{\displaystyle \scriptstyle {\hat {u}}/{\sqrt {2}}}
),
Wave period (not an amplitude) Sine voltage.svg
A sinusoidal curve
  1. Peak amplitude (),
  2. Peak-to-peak amplitude (),
  3. Root mean square amplitude (),
  4. Wave period (not an amplitude)

Peak amplitude and semi-amplitude

For symmetric periodic waves, like sine waves, square waves or triangle waves peak amplitude and semi amplitude are the same.

Peak amplitude

In audio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is the maximum absolute value of the difference from that reference.

Semi-amplitude

Semi-amplitude means half of the peak-to-peak amplitude. [2] The majority of scientific literature [3] employs the term amplitude or peak amplitude to mean semi-amplitude.

It is the most widely used measure of orbital wobble in astronomy and the measurement of small radial velocity semi-amplitudes of nearby stars is important in the search for exoplanets (see Doppler spectroscopy). [4]

Ambiguity

In general, the use of peak amplitude is simple and unambiguous only for symmetric periodic waves, like a sine wave, a square wave, or a triangle wave. For an asymmetric wave (periodic pulses in one direction, for example), the peak amplitude becomes ambiguous. This is because the value is different depending on whether the maximum positive signal is measured relative to the mean, the maximum negative signal is measured relative to the mean, or the maximum positive signal is measured relative to the maximum negative signal (the peak-to-peak amplitude) and then divided by two (the semi-amplitude). In electrical engineering, the usual solution to this ambiguity is to measure the amplitude from a defined reference potential (such as ground or 0 V). Strictly speaking, this is no longer amplitude since there is the possibility that a constant (DC component) is included in the measurement.

Peak-to-peak amplitude

Peak-to-peak amplitude (abbreviated p–p or PtP or PtoP) is the change between peak (highest amplitude value) and trough (lowest amplitude value, which can be negative). With appropriate circuitry, peak-to-peak amplitudes of electric oscillations can be measured by meters or by viewing the waveform on an oscilloscope. Peak-to-peak is a straightforward measurement on an oscilloscope, the peaks of the waveform being easily identified and measured against the graticule. This remains a common way of specifying amplitude, but sometimes other measures of amplitude are more appropriate.

Root mean square amplitude

Root mean square (RMS) amplitude is used especially in electrical engineering: the RMS is defined as the square root of the mean over time of the square of the vertical distance of the graph from the rest state; [5] i.e. the RMS of the AC waveform (with no DC component).

For complicated waveforms, especially non-repeating signals like noise, the RMS amplitude is usually used because it is both unambiguous and has physical significance. For example, the average power transmitted by an acoustic or electromagnetic wave or by an electrical signal is proportional to the square of the RMS amplitude (and not, in general, to the square of the peak amplitude). [6]

For alternating current electric power, the universal practice is to specify RMS values of a sinusoidal waveform. One property of root mean square voltages and currents is that they produce the same heating effect as a direct current in a given resistance.

The peak-to-peak value is used, for example, when choosing rectifiers for power supplies, or when estimating the maximum voltage that insulation must withstand. Some common voltmeters are calibrated for RMS amplitude, but respond to the average value of a rectified waveform. Many digital voltmeters and all moving coil meters are in this category. The RMS calibration is only correct for a sine wave input since the ratio between peak, average and RMS values is dependent on waveform. If the wave shape being measured is greatly different from a sine wave, the relationship between RMS and average value changes. True RMS-responding meters were used in radio frequency measurements, where instruments measured the heating effect in a resistor to measure a current. The advent of microprocessor-controlled meters capable of calculating RMS by sampling the waveform has made true RMS measurement commonplace.

Pulse amplitude

In telecommunication, pulse amplitude is the magnitude of a pulse parameter, such as the voltage level, current level, field intensity, or power level.

Pulse amplitude is measured with respect to a specified reference and therefore should be modified by qualifiers, such as average, instantaneous, peak, or root-mean-square.

Pulse amplitude also applies to the amplitude of frequency- and phase-modulated waveform envelopes. [7]

Formal representation

In this simple wave equation

Units

The units of the amplitude depend on the type of wave, but are always in the same units as the oscillating variable. A more general representation of the wave equation is more complex, but the role of amplitude remains analogous to this simple case.

For waves on a string, or in a medium such as water, the amplitude is a displacement.

The amplitude of sound waves and audio signals (which relates to the volume) conventionally refers to the amplitude of the air pressure in the wave, but sometimes the amplitude of the displacement (movements of the air or the diaphragm of a speaker) is described.[ citation needed ] The logarithm of the amplitude squared is usually quoted in dB, so a null amplitude corresponds to −  dB. Loudness is related to amplitude and intensity and is one of the most salient qualities of a sound, although in general sounds it can be recognized independently of amplitude. The square of the amplitude is proportional to the intensity of the wave.

For electromagnetic radiation, the amplitude of a photon corresponds to the changes in the electric field of the wave. However, radio signals may be carried by electromagnetic radiation; the intensity of the radiation (amplitude modulation) or the frequency of the radiation (frequency modulation) is oscillated and then the individual oscillations are varied (modulated) to produce the signal.

Amplitude envelopes

Amplitude envelope refers to the changes in the amplitude of a sound over time, and is an influential property as it affects perception of timbre. A flat tone has a steady state amplitude that remains constant during time, which is represented by a scalar. Other sounds can have percussive amplitude envelopes featuring an abrupt onset followed by an immediate exponential decay. [8]

Percussive amplitude envelopes are characteristic of various impact sounds: two wine glasses clinking together, hitting a drum, slamming a door, etc. where the amplitude is transient and must be represented as either a continuous function or a discrete vector. Percussive amplitude envelopes model many common sounds that have a transient loudness attack, decay, sustain, and release. [9]

Amplitude normalization

With waveforms containing many overtones, complex transient timbres can be achieved by assigning each overtone to its own distinct transient amplitude envelope. Unfortunately, this has the effect of modulating the loudness of the sound as well. It makes more sense to separate loudness and harmonic quality to be parameters controlled independently of each other.

To do so, harmonic amplitude envelopes are frame-by-frame normalized to become amplitude proportion envelopes, where at each time frame all the harmonic amplitudes will add to 100% (or 1). This way, the main loudness-controlling envelope can be cleanly controlled. [10]

In Sound Recognition, max amplitude normalization can be used to help align the key harmonic features of 2 alike sounds, allowing similar timbres to be recognized independent of loudness. [11] [12]

See also

Notes

  1. Knopp, Konrad; Bagemihl, Frederick (1996). Theory of Functions Parts I and II. Dover Publications. p. 3. ISBN   978-0-486-69219-7.
  2. Tatum, J. B. Physics  – Celestial Mechanics. Paragraph 18.2.12. 2007. Retrieved 2008-08-22.
  3. Regents of the University of California. Universe of Light: What is the Amplitude of a Wave? 1996. Retrieved 2008-08-22.
  4. Goldvais, Uriel A. Exoplanets Archived 2021-03-03 at the Wayback Machine , pp. 2–3. Retrieved 2008-08-22.
  5. Department of Communicative Disorders University of Wisconsin–Madison. RMS Amplitude Archived 2013-09-11 at the Wayback Machine . Retrieved 2008-08-22.
  6. Ward, Electrical Engineering Science, pp. 141–142, McGraw-Hill, 1971.
  7. PD-icon.svg This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on 2022-01-22.
  8. "amplitude envelope". MAPLE Lab. Retrieved 2023-10-30.
  9. Schutz, Michael; Gillard, Jessica (June 2020). "On the generalization of tones: A detailed exploration of non-speech auditory perception stimuli". Scientific Reports. 10.
  10. "Additive Sound Synthesizer Project with CODE!". www.pitt.edu.[ permanent dead link ]
  11. "Sound Sampling, Analysis, and Recognition". www.pitt.edu.[ permanent dead link ]
  12. rblack37 (2 January 2018). "I wrote a Sound Recognition Application". Archived from the original on 2021-11-08 via YouTube.{{cite web}}: CS1 maint: numeric names: authors list (link)

Related Research Articles

Additive synthesis is a sound synthesis technique that creates timbre by adding sine waves together.

<span class="mw-page-title-main">Phase (waves)</span> The elapsed fraction of a cycle of a periodic function

In physics and mathematics, the phase of a wave or other periodic function of some real variable is an angle-like quantity representing the fraction of the cycle covered up to . It is expressed in such a scale that it varies by one full turn as the variable goes through each period. It may be measured in any angular unit such as degrees or radians, thus increasing by 360° or as the variable completes a full period.

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero. Waves are often described by a wave equation or a one-way wave equation for single wave propagation in a defined direction.

In signal processing, distortion is the alteration of the original shape of a signal. In communications and electronics it means the alteration of the waveform of an information-bearing signal, such as an audio signal representing sound or a video signal representing images, in an electronic device or communication channel.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

The total harmonic distortion is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.

A signal generator is one of a class of electronic devices that generates electrical signals with set properties of amplitude, frequency, and wave shape. These generated signals are used as a stimulus for electronic measurements, typically used in designing, testing, troubleshooting, and repairing electronic or electroacoustic devices, though it often has artistic uses as well.

<span class="mw-page-title-main">Waveform</span> The shape and form of a signal

In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time. Periodic waveforms repeat regularly at a constant period. The term can also be used for non-periodic or aperiodic signals, like chirps and pulses.

In mathematics, the root mean square of a set of numbers is the square root of the set's mean square. Given a set , its RMS is denoted as either or . The RMS is also known as the quadratic mean, a special case of the generalized mean. The RMS of a continuous function is denoted and can be defined in terms of an integral of the square of the function.

<span class="mw-page-title-main">Pulse-width modulation</span> Representation of a signal as a rectangular wave with varying duty cycle

Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), is any method of representing a signal as a rectangular wave with a varying duty cycle.

Audio power is the electrical power transferred from an audio amplifier to a loudspeaker, measured in watts. The electrical power delivered to the loudspeaker, together with its efficiency, determines the sound power generated.

<span class="mw-page-title-main">Audio system measurements</span> Means of quantifying system performance

Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

<span class="mw-page-title-main">Square wave</span> Type of non-sinusoidal waveform

A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. In an ideal square wave, the transitions between minimum and maximum are instantaneous.

<span class="mw-page-title-main">Sine wave</span> Wave shaped like the sine function

A sine wave, sinusoidal wave, or sinusoid is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics, as a linear motion over time, this is simple harmonic motion; as rotation, it corresponds to uniform circular motion. Sine waves occur often in physics, including wind waves, sound waves, and light waves, such as monochromatic radiation. In engineering, signal processing, and mathematics, Fourier analysis decomposes general functions into a sum of sine waves of various frequencies, relative phases, and magnitudes.

<span class="mw-page-title-main">Function generator</span> Electronic test equipment used to generate electrical waveforms

In electrical engineering, a function generator is usually a piece of electronic test equipment or software used to generate different types of electrical waveforms over a wide range of frequencies. Some of the most common waveforms produced by the function generator are the sine wave, square wave, triangular wave and sawtooth shapes. These waveforms can be either repetitive or single-shot. Another feature included on many function generators is the ability to add a DC offset. Integrated circuits used to generate waveforms may also be described as function generator ICs.

dBFS Unit of measurement for amplitude levels in digital systems

Decibels relative to full scale is a unit of measurement for amplitude levels in digital systems, such as pulse-code modulation (PCM), which have a defined maximum peak level. The unit is similar to the units dBov and decibels relative to overload (dBO).

In electronics or electrical engineering the form factor of an alternating current waveform (signal) is the ratio of the RMS value to the average value. It identifies the ratio of the direct current of equal power relative to the given alternating current. The former can also be defined as the direct current that will produce equivalent heat.

<span class="mw-page-title-main">Sound</span> Vibration that travels via pressure waves in matter

In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

<span class="mw-page-title-main">Musical tone</span> Steady periodic sound in music

Traditionally in Western music, a musical tone is a steady periodic sound. A musical tone is characterized by its duration, pitch, intensity, and timbre. The notes used in music can be more complex than musical tones, as they may include aperiodic aspects, such as attack transients, vibrato, and envelope modulation.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.