Apochromat

Last updated
Chromatic aberration of a single lens causes different wavelengths of light to have differing focal lengths. Chromatic aberration lens diagram.svg
Chromatic aberration of a single lens causes different wavelengths of light to have differing focal lengths.

An apochromat, or apochromatic lens (apo), is a photographic or other lens that has better correction of chromatic and spherical aberration than the much more common achromat lenses.

Contents

The prefix apo- comes from the Greek preposition ἀπό-, meaning free from or away from.

Explanation

Chromatic aberration is the phenomenon of different colors focusing at different distances from a lens. In photography, chromatic aberration produces soft overall images, and color fringing at high-contrast edges, like an edge between black and white. Astronomers face similar problems, particularly with telescopes that use lenses rather than mirrors. Achromatic lenses are corrected to bring two wavelengths into focus in the same plane – typically red (~0.590  μm) and blue (~0.495  μm). Apochromatic lenses are designed to bring three colors into focus in the same plane – typically red (~0.620  μm), green (~0.530  μm), and blue (~0.465  μm). [1] The residual color error (secondary spectrum) can be up to an order of magnitude less than for an achromatic lens of equivalent aperture and focal length. Apochromats are also corrected for spherical aberration at two wavelengths, rather than one as in an achromat.

Apochromatic lens brings three colors to a common focal plane. Notice that this lens is designed for astronomy, not viewing, since one of the wavelengths (~0.780 mm) is in the near infrared, outside the visible spectrum. Apochromatic focal curve.svg
Apochromatic lens brings three colors to a common focal plane. Notice that this lens is designed for astronomy, not viewing, since one of the wavelengths (~0.780  μm) is in the near infrared, outside the visible spectrum.

Telescope objective lenses for wide-band digital imaging in astronomy must have apochromatic correction, as the optical sensitivity of typical CCD imaging arrays can extend from the ultraviolet through the visible spectrum and into the near infrared wavelength range. Apochromatic lenses for astrophotography in the 60–150 mm aperture range have been developed and marketed by several firms, with focal ratios ranging from f/5 to f/7. Focused and guided properly during the exposure, these apochromatic objectives are capable of producing the sharpest wide-field astrophotographs optically possible for the given aperture sizes.

Graphic arts process (copy) cameras generally use apochromatic lenses for sharpest possible imagery as well. Classically designed apochromatic process camera lenses generally have a maximum aperture limited to about f/9. More recently, higher-speed apochromatic lenses have been produced for medium format, digital and 35 mm cameras.

The Apochromatic lens usually comprises three elements that bring light of three distinct colors to a common focus Apochromat.svg
The Apochromatic lens usually comprises three elements that bring light of three distinct colors to a common focus

Apochromatic designs require optical glasses with special dispersive properties to achieve three color crossings. This is usually achieved using costly fluoro-crown glasses, abnormal flint glasses, and even optically transparent liquids with highly unusual dispersive properties in the thin spaces between glass elements. The temperature dependence of glass and liquid index of refraction and dispersion must be accounted for during apochromat design to assure good optical performance over reasonable temperature ranges with only slight re-focusing. In some cases, apochromatic designs without anomalous dispersion glasses are possible.

Use in photography

Independent tests can be used to demonstrate that the "APO" designation is used rather loosely by some photographic lens manufacturers to describe the color accuracy of their lenses, as comparable lenses have shown superior color accuracy even though they did not carry the "APO" designation. [2] [3]

Also, when considering lens design, the "APO" designation is used more conservatively in astronomy-related optics (e.g. telescopes) and microscopy than in photography. For example, telescopes that are marked "APO" are specialized, fixed focal length lenses that are optimised for infinity-like distances whereas in photography, even certain relatively low-priced general-purpose zoom lenses are given the APO designation. [4]

Often, however, apochromatic lenses used in fine cameras are not termed apochromats, Instead, they may be simply called "fluorite lenses", based on the material with anomalous partial dispersion which allowed them to be apochromatic. Such lenses began to be available to photographers in 1969, with the Canon FL-F 300mm f/5.6 telephoto lens. Fluorite has some drawbacks, for example vulnerability to sudden changes in temperature, and thus attempts were made to use substitutes, such as fluorophosphate glasses, which ameliorate, but do not completely eliminate (as compared with ordinary glass) these drawbacks.

Acrylic plastic, and, for that matter, polycarbonate, can be used to construct lenses, and their dispersion characteristics also differ from those of glass. They are, however, not normally used in the construction of apochromatic lenses, despite being much cheaper and more robust than fluorite, because the refractive index of plastics generally changes with temperature about a hundred times as much as that of glass.

See also

Focus error for four types of lens, over the visible and near infrared spectrum. Comparison chromatic focus shift plots.svg
Focus error for four types of lens, over the visible and near infrared spectrum.

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Fluorite</span> Mineral form of calcium fluoride

Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.

<span class="mw-page-title-main">Chromatic aberration</span> Failure of a lens to focus all colors on the same point

In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

<span class="mw-page-title-main">Achromatic lens</span> Lens that is designed to limit the effects of chromatic and spherical aberration

An achromatic lens or achromat is a lens that is designed to limit the effects of chromatic and spherical aberration. Achromatic lenses are corrected to bring two wavelengths into focus on the same plane. Wavelengths in between these two then have better focus error than could be obtained with a simple lens.

<span class="mw-page-title-main">Camera lens</span> Optical lens or assembly of lenses used with a camera to create images

A camera lens is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.

<span class="mw-page-title-main">Refracting telescope</span> Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

<span class="mw-page-title-main">Objective (optics)</span> Lens or mirror in optical instruments

In optical engineering, an objective is an optical element that gathers light from an object being observed and focuses the light rays from it to produce a real image of the object. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

<span class="mw-page-title-main">Large format lens</span>

Large format lenses are photographic optics that provide an image circle large enough to cover the large format film or plates used in large format cameras.

Crown glass is a type of optical glass used in lenses and other optical components. It has relatively low refractive index (≈1.52) and low dispersion. Crown glass is produced from alkali-lime silicates containing approximately 10% potassium oxide and is one of the earliest low dispersion glasses.

<span class="mw-page-title-main">Superachromat</span>

The superachromat or superachromatic lens was first conceived and developed by Maximilian Herzberger as the ultimate well-corrected lens. The color shift curve of a superachromat is a quartic, meaning that in theory four separate colors can be brought to focus in the same plane, while simultaneously correcting spherical aberration and field aberrations. This near-perfect correction of chromatic aberration is highly beneficial in film and digital multi-spectral photography, as a superachromat can focus near-infrared energy in the 0.7 to 1.0 micrometer wavelength band in the same focal plane as visible light, eliminating the need for refocusing. Unfortunately, due to the limited selection of optical glasses and partial dispersion properties, superachromats must be manufactured with costly fluorite glasses and to very tight tolerances.

<span class="mw-page-title-main">Achromatic telescope</span> A refracting telescope design that reduces cromatic aberration

The achromatic telescope is a refracting telescope that uses an achromatic lens to correct for chromatic aberration.

Chester Moore Hall was a British lawyer and inventor who produced the first achromatic lenses in 1729 or 1733 . He used the achromatic lens to build the first achromatic telescope, a refracting telescope free from chromatic aberration.

<span class="mw-page-title-main">Sigma 70-300mm f/4–5.6 APO DG Macro lens</span>

The Sigma 70-300mm F4-5.6 APO DG Macro lens is a consumer-level, telephoto zoom lens made by Sigma Corporation. Different versions of this lens are produced that work with cameras from Canon, Nikon, Pentax, Konica Minolta, Sony and Sigma. Additionally, Olympus' 70–300 f/4–5.6 lens for Four-Thirds has the same optical design and specifications as this lens. The lens is packaged with a lens hood.

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

Low-dispersion glass is a type of glass with a reduction in chromatic aberration. Crown glass is an example of a relatively inexpensive low-dispersion glass.

A flat lens is a lens whose flat shape allows it to provide distortion-free imaging, potentially with arbitrarily-large apertures. The term is also used to refer to other lenses that provide a negative index of refraction. Flat lenses require a refractive index close to −1 over a broad angular range. In recent years, flat lenses based on metasurfaces were also demonstrated.

Canon FL 300mm lens refers to two telephoto prime lenses made by Canon. The lenses have an FL type mount which fits the Canon FL line of cameras.

<span class="mw-page-title-main">History of photographic lens design</span>

The invention of the camera in the early 19th century led to an array of lens designs intended for photography. The problems of photographic lens design, creating a lens for a task that would cover a large, flat image plane, were well known even before the invention of photography due to the development of lenses to work with the focal plane of the camera obscura.

References

  1. "What do APO and Apochromatic mean?". stason.org. Lenses FAQ.
  2. "A 300mm f/2.8 photographic lens with the "APO" designation, tested for chromatic aberration". Archived from the original on 2015-09-10. Retrieved 2011-03-28.
  3. "A 300mm f/2.8 photographic lens without the "APO" designation, tested for chromatic aberration". Archived from the original on 2015-09-11. Retrieved 2011-03-28.
  4. "An inexpensive photographic zoom lens with the "APO" designation". Archived from the original on 2011-03-10. Retrieved 2011-03-25.