Astronautics

Last updated
Hubble Space Telescope over Earth (during the STS-109 mission) Hubble Space Telescope over Earth (during the STS-109 mission).jpg
Hubble Space Telescope over Earth (during the STS-109 mission)

Astronautics (or cosmonautics) is the practice of sending spacecraft beyond Earth's atmosphere into outer space. Spaceflight is one of its main applications and space science is its overarching field.

Contents

The term astronautics (originally astronautique in French) was coined in the 1920s by J.-H. Rosny, president of the Goncourt academy, in analogy with aeronautics. [1] Because there is a degree of technical overlap between the two fields, the term aerospace is often used to describe both at once. In 1930, Robert Esnault-Pelterie published the first book on the new research field. [2]

The term cosmonautics (originally cosmonautique in French) was introduced in 1930s by Ary Sternfeld with his book Initiation à la Cosmonautique (Introduction to cosmonautics) [3] (the book brought him the Prix REP-Hirsch, later known as the Prix d'Astronautique, of the French Astronomical Society in 1934. [4] )

As with aeronautics, the restrictions of mass, temperatures, and external forces require that applications in space survive extreme conditions: high-grade vacuum, the radiation bombardment of interplanetary space and the magnetic belts of low Earth orbit. Space launch vehicles must withstand titanic forces, while satellites can experience huge variations in temperature in very brief periods. [5] Extreme constraints on mass cause astronautical engineers to face the constant need to save mass in the design in order to maximize the actual payload that reaches orbit.

History

The early history of astronautics is theoretical: the fundamental mathematics of space travel was established by Isaac Newton in his 1687 treatise Philosophiæ Naturalis Principia Mathematica . [6] Other mathematicians, such as Swiss Leonhard Euler and Franco-Italian Joseph Louis Lagrange also made essential contributions in the 18th and 19th centuries. In spite of this, astronautics did not become a practical discipline until the mid-20th century. On the other hand, the question of spaceflight puzzled the literary imaginations of such figures as Jules Verne and H. G. Wells. At the beginning of the 20th century, Russian cosmist Konstantin Tsiolkovsky derived the rocket equation, the governing equation for a rocket-based propulsion, enabling computation of the final velocity of a rocket from the mass of spacecraft (), combined mass of propellant and spacecraft () and exhaust velocity of the propellant ().

By the early 1920s, Robert H. Goddard was developing liquid-propellant rockets, which would in a few brief decades become a critical component in the designs of such famous rockets as the V-2 and Saturn V.

The Prix d'Astronautique (Astronautics Prize) awarded by the Société astronomique de France, the French astronomical society, was the first prize on this subject. The international award, established by aviation and astronautical pioneer Robert Esnault-Pelterie and André-Louis Hirsch, was given from 1929 to 1939 in recognition of the study of interplanetary travel and astronautics.

By the mid-1950s, the Space Race between the USSR and the US had begun.

Subdisciplines

Although many regard astronautics itself as a rather specialized subject, engineers and scientists working in this area must be knowledgeable in many distinct fields.

See also

Related Research Articles

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Konstantin Tsiolkovsky</span> Russian and Soviet rocket scientist (1857–1935)

Konstantin Eduardovich Tsiolkovsky was a Russian and Soviet rocket scientist who pioneered astronautics. Along with Hermann Oberth and Robert H. Goddard, he is one of the pioneers of space flight and the founding father of modern rocketry and astronautics. His works later inspired Wernher von Braun and leading Soviet rocket engineers Sergei Korolev and Valentin Glushko, who contributed to the success of the Soviet space program. Tsiolkovsky spent most of his life in a log house on the outskirts of Kaluga, about 200 km (120 mi) southwest of Moscow. A recluse by nature, his unusual habits made him seem bizarre to his fellow townsfolk.

<span class="mw-page-title-main">Rocket</span> Vehicle propelled by a reaction gas engine

A rocket is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely from propellant carried within the vehicle; therefore a rocket can fly in the vacuum of space. Rockets work more efficiently in a vacuum and incur a loss of thrust due to the opposing pressure of the atmosphere.

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

A pulsed plasma thruster (PPT), also known as a plasma jet engine, is a form of electric spacecraft propulsion. PPTs are generally considered the simplest form of electric spacecraft propulsion and were the first form of electric propulsion to be flown in space, having flown on two Soviet probes starting in 1964. PPTs are generally flown on spacecraft with a surplus of electricity from abundantly available solar energy.

<span class="mw-page-title-main">Spaceflight</span> Flight into or through outer space

Spaceflight is an application of astronautics to fly objects, usually spacecraft, into or through outer space, either with or without humans on board. Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in orbit around Earth, but also includes space probes for flights beyond Earth orbit. Such spaceflight operate either by telerobotic or autonomous control. The more complex human spaceflight has been pursued soon after the first orbital satellites and has reached the Moon and permanent human presence in space around Earth, particularly with the use of space stations. Human spaceflight programs include the Soyuz, Shenzhou, the past Apollo Moon landing and the Space Shuttle programs. Other current spaceflight are conducted to the International Space Station and to China's Tiangong Space Station.

<span class="mw-page-title-main">Hohmann transfer orbit</span> Transfer manoeuvre between two orbits

In astronautics, the Hohmann transfer orbit is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.

<span class="mw-page-title-main">Orbital mechanics</span> Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

Delta-v, symbolized as and pronounced delta-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.

In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).

<span class="mw-page-title-main">Launch vehicle</span> Rocket used to carry a spacecraft into space

A launch vehicle is typically a rocket-powered vehicle designed to carry a payload from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling. Launch vehicles are engineered with advanced aerodynamics and technologies, which contribute to high operating costs.

<span class="mw-page-title-main">Spacecraft flight dynamics</span> Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

<span class="mw-page-title-main">Robert Esnault-Pelterie</span> French aircraft and rocket pioneer (1881–1957)

Robert Albert Charles Esnault-Pelterie was a French aircraft designer and spaceflight theorist. He is referred to as being one of the founders of modern rocketry and astronautics, along with the Russian Konstantin Tsiolkovsky, the Germans Hermann Oberth, Wernher Von Braun and the American Robert H. Goddard.

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many different depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

Luigi Gussalli (1885–1950), engineer and inventor, was a pioneer of motor cars. He turned to astronautics in the 1920s, corresponding with world leaders in this field, such as Oberth and Goddard and exchanging with them theories on interplanetary flight and its prospects. He developed a special double-reaction engine, wrote extensively on multi-stage rockets and published two books on space travel. The first one, in 1923, described a space flight to the Moon, the second one, written in 1946, is even more astonishing in its theme: “Interplanetary travels by means of solar radiations”.

The French space program includes both civil and military spaceflight activities. It is the third oldest national space program in the world, after the Soviet and American space programs, and the largest space program in Europe.

<span class="mw-page-title-main">Ary Abramovich Sternfeld</span> Polish-Russian early spaceflight scientist

Ary Sternfeld was co-creator of the modern aerospace science. He was a Polish engineer of Jewish origin, who studied in Poland and France. From 1935 until his death he worked in Moscow.

<span class="mw-page-title-main">Mike Gruntman</span> American physicist

Mike Gruntman is a Russian-American physicist, space engineer, and author. He is professor of astronautics and aerospace engineering at the Viterbi School of Engineering, University of Southern California (USC).

Microwave electrothermal thruster, also known as MET, is a propulsion device that converts microwave energy into thermal energy. These thrusters are predominantly used in spacecraft propulsion, more specifically to adjust the spacecraft’s position and orbit. A MET sustains and ignites a plasma in a propellant gas. This creates a heated propellant gas which in turn changes into thrust due to the expansion of the gas going through the nozzle. A MET’s heating feature is like one of an arc-jet ; however, due to the free-floating plasma, there are no problems with the erosion of metal electrodes, and therefore the MET is more efficient.

References

  1. "Archived copy" (PDF). Archived (PDF) from the original on 2017-08-11. Retrieved 2017-02-02.{{cite web}}: CS1 maint: archived copy as title (link)
  2. "ROBERT ESNAULT-PELTERIE, « l'Astronautique » - Encyclopædia Universalis". Archived from the original on 2014-04-29. Retrieved 2017-02-02.
  3. Gruntman, Mike (2007). From Astronautics to Cosmonautics. p. 21. ISBN   978-1419670855.
  4. l'Astronomie, 1934, p. 325–326.
  5. Understanding Space: An Introduction to Astronautics, Sellers. 2nd Ed. McGraw-Hill (2000)
  6. Fundamentals of Astrodynamics, Bate, Mueller, and White. Dover: New York (1971).

Further reading