Astrophysical fluid dynamics

Last updated


Astrophysical fluid dynamics is a branch of modern astronomy which deals with the motion of fluids in outer space using fluid mechanics, such as those that make up the Sun and other stars. [1] The subject covers the fundamentals of fluid mechanics using various equations, such as continuity equations, the Navier–Stokes equations, and Euler's equations of collisional fluids. [2] [3] Some of the applications of astrophysical fluid dynamics include dynamics of stellar systems, accretion disks, astrophysical jets, [4] Newtonian fluids, and the fluid dynamics of galaxies.

Contents

Introduction

Astrophysical fluid dynamics applies fluid dynamics and its equations to the movement of the fluids in space. The applications are different from regular fluid mechanics in that nearly all calculations take place in a vacuum with zero gravity.[ citation needed ]

Most of the interstellar medium is not at rest, but is in supersonic motion due to supernova explosions, stellar winds, radiation fields and a time dependent gravitational field caused by spiral density waves in the stellar discs of galaxies. Since supersonic motions almost always involve shock waves, shock waves must be accounted for in calculations. The galaxy also contains a dynamically significant magnetic field, meaning that the dynamics are governed by the equations of compressible magnetohydrodynamics. In many cases, the electrical conductivity is large enough for the ideal MHD equations to be a good approximation, but this is not true in star forming regions where the gas density is high and the degree of ionization is low.[ citation needed ]

Star formation

An example problem is that of star formation. Stars form out of the interstellar medium, with this formation mostly occurring in giant molecular clouds such as the Rosette Nebula. An interstellar cloud can collapse due to its self-gravity if it is large enough; however, in the ordinary interstellar medium this can only happen if the cloud has a mass of several thousands of solar masses—much larger than that of any star. Stars may still form, however, from processes that occur if the magnetic pressure is much larger than the thermal pressure, which is the case in giant molecular clouds. These processes rely on the interaction of magnetohydrodynamic waves with a thermal instability. A magnetohydrodynamic wave in a medium in which the magnetic pressure is much larger than the thermal pressure can produce dense regions, but they cannot by themselves make the density high enough for self-gravity to act. However, the gas in star forming regions is heated by cosmic rays and is cooled by radiative processes. The net result is that a gas in a thermal equilibrium state in which heating balances cooling can exist in three different phases at the same pressure: a warm phase with a low density, an unstable phase with intermediate density and a cold phase at low temperature. An increase in pressure due to a supernova or a spiral density wave can shift the gas from the warm phase to the unstable phase, with a magnetohydrodynamic wave then being able to produce dense fragments in the cold phase whose self-gravity is strong enough for them to collapse into stars.[ citation needed ]

Basic concepts

Concepts of fluid dynamics

Many regular fluid dynamics equations are used in astrophysical fluid dynamics. Some of these equations are: [2]

Conservation of mass

The continuity equation is an extension of conservation of mass to fluid flow.[ citation needed ] Consider a fluid flowing through a fixed volume tank having one inlet and one outlet. If the flow is steady (no accumulation of fluid within the tank), then the rate of fluid flow at entry must be equal to the rate of fluid flow at the exit for mass conservation. If, at an entry (or exit) having a cross-sectional area m2, a fluid parcel travels a distance in time , then the volume flow rate ( m3s−1) is given by:

but since is the fluid velocity ( ms−1) we can write:

The mass flow rate ( kgs−1) is given by the product of density and volume flow rate

[ inconsistent ]

Because of conservation of mass, between two points in a flowing fluid we can write . This is equivalent to:

If the fluid is incompressible, () then:

This result can be applied to many areas in astrophysical fluid dynamics, such as neutron stars.[ citation needed ]


Related Research Articles

<span class="mw-page-title-main">Fluid dynamics</span> Aspects of fluid mechanics involving flow

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

<span class="mw-page-title-main">Mach number</span> Ratio of speed of an object moving through fluid and local speed of sound

The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Austrian physicist and philosopher Ernst Mach.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

<span class="mw-page-title-main">Baroclinity</span> Measure of misalignment between the gradients of pressure and density in a fluid

In fluid dynamics, the baroclinity of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure. A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.

In fluid dynamics, the Boussinesq approximation is used in the field of buoyancy-driven flow. It ignores density differences except where they appear in terms multiplied by g, the acceleration due to gravity. The essence of the Boussinesq approximation is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific weight appreciably different between the two fluids. Sound waves are impossible/neglected when the Boussinesq approximation is used since sound waves move via density variations.

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In fluid mechanics, or more generally continuum mechanics, incompressible flow refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An equivalent statement that implies incompressibility is that the divergence of the flow velocity is zero.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

<span class="mw-page-title-main">Smoothed-particle hydrodynamics</span> Method of hydrodynamics simulation

Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method, and the resolution of the method can easily be adjusted with respect to variables such as density.

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

<span class="mw-page-title-main">Open-channel flow</span> Type of liquid flow within a conduit

In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not hydraulic pressure.

Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects.

<span class="mw-page-title-main">Jeans instability</span> Mechanism by which the collapse of interstellar gas clouds causes star formation

The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. It is named after James Jeans.

In fluid dynamics, dynamic pressure is the quantity defined by:

In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

References

  1. "Aims and Scope" Geophysical & Astrophysical Fluid Dynamics Taylor and Francis Accessed Dec. 10, 2015
  2. 1 2 Shore, Steven N. Astrophysical Hydrodynamics: An Introduction. Weinheim: WILEY-VCH, 2007.
  3. University of Cambridge Department of Astronomy. Part II Astrophysical Fluid Dynamics Accessed Dec 10, 2015
  4. Smith, Michael D. Astrophysical Jets and Beams. Cambridge: Cambridge University Press, 2012.

Further reading