Atlas LV-3B

Last updated

Atlas LV-3B
Launch of Friendship 7 - GPN-2000-000686.jpg
An Atlas D LV-3B launching Mercury-Atlas 6
FunctionCrewed expendable launch system
Manufacturer Convair
Country of originUnited States
Size
Height28.7 metres (94.3 ft)
Diameter3.0 metres (10.0 ft)
width over boost fairing 4.9 metres (16 ft)
Mass120,000 kilograms (260,000 lb)
Stages
Capacity
Payload to LEO
Mass1,360 kilograms (3,000 lb) [1]
Launch history
StatusRetired
Launch sites CCAFS LC-14
Total launches9
Success(es)7
Failure(s)2
First flight29 July 1960
Last flight15 May 1963
Boosters
No. boosters1
Powered by2 Rocketdyne XLR-89-5
Maximum thrust1,517.4 kilonewtons (341,130 lbf)
Burn time135 seconds
Propellant RP-1/LOX

Aside from the modifications described below, Convair set aside a separate assembly line dedicated to Mercury-Atlas vehicles which was staffed by personnel who received special orientation and training on the importance of the crewed space program and the need for as high a degree of top-quality workmanship as possible. Components used in the Mercury-Atlas vehicles were given thorough testing to ensure proper manufacturing quality and operating condition, in addition components and subsystems with excessive operating hours, out-of-specification performance, and questionable inspection records would be rejected. All components approved for the Mercury program were earmarked and stored separately from hardware intended for other Atlas programs and special handling procedures were done to protect them from damage. The factory inspection of Mercury vehicles was performed by Convair personnel specially chosen for their experience, familiarity with the Atlas hardware, and who had demonstrated a favorable disposition and work ethic.

Propulsion systems used for the Mercury vehicles would be limited to standard D-series Atlas models of the Rocketdyne MA-2 engines which had been tested and found to have performance parameters closely matching NASA's specifications. NASA decided that the best choice of engines would be units with roughly medium-tier performance. Engines with higher than average performance were not considered acceptable because nobody could determine exactly why a given set of engines performed the way it did, and so it was considered safest to use medium-performance ones.

For the most part, NASA preferred to stay conservative with the Mercury vehicles and avoid modifying them any more than necessary. Modifications to the Atlas would largely be limited to those that improved pilot safety and the standard D-series Atlas configuration was to be retained as much as possible, so assorted enhancements made to the latest Atlas missiles would not be used. Various equipment and procedures used with Mercury vehicles, although outdated and often not the best or latest, were preferred because they were proven and well-understood. Any new equipment or hardware changes made to Mercury vehicles had to be flown on at least three Atlas R&D tests before NASA would approve them for use. Despite the conservatism and caution taken with the design of Mercury vehicles, a huge number of changes nonetheless did take place over the 4+12 years of the program from lessons learned and the emphasis on quality control got tighter as time went along; the last two Mercury flights were given a level of testing and pre-flight inspection that was unheard of when Big Joe flew in 1959.

All launch vehicles would have to be complete and fully flight-ready at delivery to Cape Canaveral with no missing components or unscheduled modifications/upgrades. After delivery, a comprehensive inspection of the booster would be undertaken and prior to launch, a flight review board would convene to approve each booster as flight-ready. The review board would conduct an overview of all pre-launch checks, and hardware repairs/modifications. In addition, Atlas flights over the past few months in both NASA and Air Force programs would be reviewed to make sure no failures occurred involving any components or procedures relevant to Project Mercury.

The NASA Quality Assurance Program meant that each Mercury-Atlas vehicle took twice as long to manufacture and assemble as an Atlas designed for uncrewed missions and three times as long to test and verify for flight.

Systems modified

Abort sensor

Central to these efforts was the development of the Abort Sensing and Implementation System (ASIS), which would detect malfunctions in the Atlas's various components and trigger a launch abort if necessary. Added redundancy was built in; if ASIS itself failed, the loss of power would also trigger an abort. The ASIS system was first carried on a few Atlas missile R&D flights, then flown open loop on Mercury-Atlas 1, meaning the ASIS could generate an abort signal but not send a cutoff command to the propulsion system. It was operated closed-loop on MA-3 for the first time.

The Mercury launch escape system (LES) used on Redstone and Atlas launches was identical, but the ASIS system varied considerably between the two boosters as Atlas was a much larger, more complex vehicle with five engines, two of which were jettisoned during flight, a more sophisticated guidance system, and inflated balloon tanks that required constant pressure to not collapse.

Big Joe and MA-1 had no escape tower, the latter's in-flight failure was possibly due to the lack of the LES negatively affecting its aerodynamic profile and so MA-2 carried a dummy tower. A live LES was carried for the first time on MA-3 (and ended up proving its functionality in an unplanned test).

Atlas flight test data was used to draw up a list of the most likely failure modes for the D-series vehicles, however simplicity reasons dictated that only a limited number of booster parameters could be monitored. An abort could be triggered by the following conditions, all of which could be indicative of a catastrophic failure:

The ASIS system was deemed necessary because some flight failures of Atlas vehicles (for instance, Atlas 6B) occurred so fast that it would be nearly impossible for the astronaut to react in time to manually activate the LES. Other failure modes such as a deviation from the correct flight trajectory did not necessarily pose an immediately danger to the astronaut's safety, and the flight could be aborted manually.

Not all of the modifications listed below were carried on every Mercury flight and numerous changes were made along the way in the interest of improvement or as a result of flight data obtained from failed Atlas launches. Quality control and checkout procedures also improved and became more detailed over the course of the program.

Rate gyros

The rate gyro package was placed much closer to the forward section of the LOX tank due to the Mercury/LES combination being considerably longer than a warhead and thus producing different aerodynamic characteristics (the standard Atlas D gyro package was still retained on the vehicle for the use of the ASIS). Mercury-Atlas 5 also added a new reliability feature—motion sensors to ensure proper operation of the gyroscopes prior to launch. This idea had originally been conceived when the first Atlas B launch in 1958 went out of control and destroyed itself after being launched with a non-functioning yaw gyro, but it was phased into Atlas vehicles only gradually. One other Atlas missile test in 1961 also destroyed itself during launch, in that case because the gyroscope motor speed was too low. The motion sensors would thus eliminate this failure mode.

Range safety

The range safety system was also modified for the Mercury program. There would be a three-second delay between engine cutoff and activation of the destruct charges so as to give the LES time to pull the capsule to safety. More specifically, if the Range Safety destruct command was sent, the ASIS system would allow the engine cutoff signal to go through, while blocking the destruct signal for three seconds. The decrease in engine performance would then be sensed by the ASIS, which would activate the LES, after which the destruct signal would be unblocked and destroy the launch vehicle. Engine cutoff and destruct commands were also blocked for the first 30 seconds of launch to prevent a malfunctioning vehicle from coming down on or around the pad.

Autopilot

D-series Atlas missiles as well as early SLV variants carried the old-fashioned electromechanical autopilot (known as the "round" autopilot due to the shape of the containers its major components were housed in), but on Mercury vehicles, it was decided to use the newer transistorized "square" autopilot developed for the E and F-series missiles, and for the upcoming Atlas-Centaur vehicle. The first three Mercury-Atlas vehicles still had the round autopilot and it was flown for the first time on Mercury-Atlas 3, but failed disastrously when the booster did not perform the programmed pitchover maneuver and had to be destroyed by Range Safety action. Afterwards, the missile programmer was recovered and examined. While the exact cause of the failure was not identified, several causes were proposed and a number of modifications made to the programmer. On Mercury-Atlas 4, high vibration levels in flight resulted in more modifications and it finally worked perfectly on Mercury-Atlas 5.

Telemetry

Beginning on MA-3, a newer transistorized telemetry system replaced the old vacuum tube-based unit, which was heavy, had high power consumption, and tended to suffer from signal fade as vehicle altitude increased. As with most SLV configurations of Atlas, Mercury vehicles carried only one telemetry package while R&D missile tests had three.

Antenna

The guidance antenna was modified to reduce signal interference.

LOX boil-off valve

Mercury-Atlas vehicles utilized the boil-off valve from the C-series Atlas rather than the standard D-series valve for reliability and weight-saving reasons.

Combustion sensors

Combustion instability was a repeated problem in static firing tests of the MA-2 engines and had also caused the on-pad explosion of two Atlas vehicles in early 1960. Thus, it was decided to install extra sensors in the engines to monitor combustion levels and the booster would also be held down on the pad for a few moments after ignition to ensure smooth thrust. The engines would also use a "wet start", meaning that the engine tubes would contain an inert fluid to act as a shock damper (the two failed Atlas D flight tests used dry starts, with no fluid in the engine tubes). If the booster failed the check, it would be automatically shut down. By late 1961, after a third missile (27E) had exploded on the pad from combustion instability, Convair developed a significantly upgraded propulsion system that featured baffled fuel injectors and a hypergolic igniter in place of the pyrotechnic method, but NASA were unwilling to jeopardize John Glenn's upcoming flight with these untested modifications and so declined to have them installed in Mercury-Atlas 6's booster. As such, that and Scott Carpenter's flight on MA-7 used the old-style Atlas propulsion system and the new variant was not employed until Wally Schirra's flight late in 1962.

Static testing of Rocketdyne engines had produced high-frequency combustion instability, in what was known as the "racetrack" effect where burning propellant would swirl around the injector head, eventually destroying it from shock waves. On the launches of Atlas 51D and 48D, the failures were caused by low-order rough combustion that ruptured the injector head and LOX dome, causing a thrust section fire that led to eventual complete loss of the missile. The exact reason for the back-to-back combustion instability failures on 51D and 48D was not determined with certainty, although several causes were proposed. This problem was resolved by installing baffles in the injector head to break up swirling propellant, at the expense of some performance as the baffles added additional weight and reduced the number of injector holes that the propellants were sprayed through. The lessons learned with the Atlas program later proved vital to the development of the much larger Saturn F-1 engine.

Electrical system

Added redundancy was made to the propulsion system electrical circuitry to ensure that SECO would occur on time and when commanded. The LOX fuel feed system received added wiring redundancy to ensure that the propellant valves would open in the proper sequence during engine start.

Tank bulkhead

Mercury vehicles up to MA-7 had foam insulation in the intermediate bulkhead to prevent the super-chilled LOX from causing the RP-1 to freeze. During repairs to MA-6 prior to John Glenn's flight, it was decided to remove the insulation for being unnecessary and an impediment during servicing of the boosters in the field. NASA sent out a memo to GD/A requesting that subsequent Mercury-Atlas vehicles not include bulkhead insulation.

LOX turbopump

In early 1962, two static engine tests and one launch (Missile 11F) fell victim to LOX turbopump explosions caused by the impeller blades rubbing against the metal casing of the pump and creating a friction spark. This happened after over three years of Atlas flights without any turbopump issues and it was not clear why the rubbing occurred, but all episodes of this happened when the sustainer inlet valve was moving to the flight-ready "open" position and while running untested hardware modifications. In addition Atlas 113D, the booster used for Wally Schirra's flight, was given a PFRT (Pre-Flight Readiness Test) to verify proper functionality of the propulsion system. On MA-9, a plastic liner was added to the inside of the pumps to prevent this failure mode from recurring.

Pneumatic system

Mercury vehicles used a standard D-series Atlas pneumatic system, although studies were conducted over the cause of tank pressure fluctuation which was known to occur under certain payload conditions. These studies found that the helium regulator used on early D-series vehicles had a tendency to induce resonant vibration during launch, but several modifications to the pneumatic system had been made since then, including the use of a newer model regulator that did not produce this effect.

The flow of helium to the LOX tank on Mercury vehicles was limited to 1 lb per second. This change was made after Atlas 81D, an IOC test from VAFB, was destroyed in-flight due to a malfunction that caused the pressurization regulator to overpressurize the tank until it ruptured.

Hydraulic system

The hydraulic system on Mercury vehicles was a standard D-series Atlas setup. The vernier solo accumulator was deleted as Mercury vehicles did not perform vernier solo mode. A hydraulic pressure switch on MA-7 was tripped and flagged an erroneous abort signal, so on subsequent vehicles additional insulation was added as cold temperatures from LOX lines were thought to have triggered it.

Propellant utilization system

In the event that the guidance system failed to issue the discreet cutoff command to the sustainer engine and it burned to propellant depletion, there was the possibility of a LOX-rich shutdown which could result in damage to engine components from high temperatures. For safety reasons, the PU system was modified to increase the LOX flow to the sustainer engine ten seconds before SECO. This was to ensure that the LOX supply would be completely exhausted at SECO and prevent a LOX-rich shutdown. The PU system was set up in the Atlas C configuration through MA-6 in the interest of reliability, the standard D-series PU setup not being used until MA-7.

Skin

Big Joe and MA-1's boosters sported thicker gauge skin on the fuel tank but the LOX tank used the standard D-series missile skin. After the loss of the latter vehicle in flight, NASA determined that the standard LOX tank skin was insufficient and requested it be made thicker. Atlas 100D would be the first thick-skinned booster delivered while in the meantime, MA-2's booster (67D) which was still a thin-skinned model, had to be equipped with a steel reinforcement band at the interface between the capsule and the booster. Under original plans, Atlas 77D was to have been the booster used for MA-3. It received its factory rollout inspection in September 1960, but shortly afterwards, the postflight findings for MA-1 came out which led to the thin-skinned 77D being recalled and replaced by 100D.

The LOX tank skin was thickened still further on MA-7 as the operational Mercury flights carried more equipment and consumables than the R&D ones and capsule weight was growing.

Guidance

The vernier solo phase, which would be used on ICBMs to fine-tune the missile velocity after sustainer cutoff, was eliminated from the guidance program in the interest of simplicity as well as improved performance and lift capacity. Since orbital flights required an extremely different flight path from missiles, the guidance antennas had to be completely redesigned to ensure maximum signal strength. The posigrade rocket motors on the top of the Atlas, designed to push the spent missile away from the warhead, were moved to the Mercury capsule itself. This also necessitated adding a fiberglass insulation shield to the LOX tank dome so it wouldn't be ruptured by the rocket motors.

Engine alignment

A common and normally harmless phenomenon on Atlas vehicles was the tendency of the booster to develop a slight roll in the first few seconds following liftoff due to the autopilot not kicking in yet. On a few flights however, the booster developed enough rolling motion to potentially trigger an abort condition if it had been a crewed launch. Although some roll was naturally imparted by the Atlas's turbine exhaust, this could not account for the entire problem which instead had more to do with engine alignment. Acceptance data from the engine supplier (Rocketdyne) showed that a group of 81 engines had an average roll movement in the same direction of approximately the same magnitude as that experienced in flight. Although the acceptance test-stand and flight-experience data on individual engines did not correlate, it was determined that offsetting the alignment of the booster engines could counteract this roll motion and minimize the roll tendency at liftoff. After Schirra's Mercury flight did experience momentary roll problems early in the launch, the change was incorporated into Gordon Cooper's booster on MA-9.

Launches

Nine LV-3Bs were launched, two on uncrewed suborbital test flights, three on uncrewed orbital test flights, and four with crewed Mercury spacecraft. [4] [1] Atlas LV-3B launches were conducted from Launch Complex 14 at Cape Canaveral Air Force Station, Florida. [4]

It first flew on 29 July 1960, conducting the suborbital Mercury-Atlas 1 test flight. The rocket suffered a structural failure shortly after launch, and as a result failed to place the spacecraft onto its intended trajectory. [5] In addition to the maiden flight, the first orbital launch, Mercury-Atlas 3 also failed. This failure was due to a problem with the guidance system failing to execute pitch and roll commands, necessitating that the Range Safety Officer destroy the vehicle. The spacecraft separated by means of its launch escape system and was recovered 1.8 kilometres (1.1 mi) from the launch pad.

A further series of Mercury launches was planned, which would have used additional LV-3Bs; however these flights were canceled after the success of the initial Mercury missions. [6] The last LV-3B launch was conducted on 15 May 1963, for the launch of Mercury-Atlas 9. NASA originally planned to use leftover LV-3B vehicles to launch Gemini-Agena Target Vehicles, however an increase in funding during 1964 meant that the agency could afford to buy brand-new Atlas SLV-3 vehicles instead, so the idea was scrapped. [7]

Mercury-Atlas vehicles built and eventual disposition

VehicleMissionPhotoDate
10D Big Joe
Big Joe Ready for Launch at Cape Canaveral - GPN-2002-000045.jpg
9 September 1959
20D Pioneer P-3 (Backup vehicle for Big Joe, reassigned to Atlas-Able program)
Atlas Able 1959 Nov 26.JPG
26 November 1959
50D Mercury-Atlas 1
Mercury-Atlas 1 liftoff.jpg
29 July 1960
67D Mercury-Atlas 2
Mercury-Atlas 2 liftoff.jpg
21 February 1961
77Dunflown (Original vehicle for Mercury-Atlas 3, replaced by Atlas 100D after postflight findings from Mercury-Atlas 1)
88D Mercury-Atlas 4
Mercury-Atlas 4 launch - cropped.jpg
13 September 1961
93D Mercury-Atlas 5
Atlas D with Mercury-Atlas 5 (Nov. 29 1961).jpg
29 November 1961
100D Mercury-Atlas 3
Mercury-Atlas 3 launch.jpg
25 April 1961
103Dunflown
107D Mercury-Atlas 7 (Aurora 7)
Mercury-Atlas 7 launch.jpg
24 May 1962
109D Mercury-Atlas 6 (Friendship 7)
KSC-JohnGlenn-0007 (31400476631).jpg
21 February 1962
113D Mercury-Atlas 8 (Sigma 7)
Launch of the Mercury-Atlas 8 "Sigma 7" mission - S62-07872.jpg
3 October 1962
130D Mercury-Atlas 9 (Faith 7)
Mercury-Atlas Rocket on the Launch Pad - GPN-2000-000998.jpg
15 May 1963
144D Mercury-Atlas 10 (Cancelled)
152Dunflown
167Dunflown

See also

Related Research Articles

The SM-65 Atlas was the first operational intercontinental ballistic missile (ICBM) developed by the United States and the first member of the Atlas rocket family. It was built for the U.S. Air Force by the Convair Division of General Dynamics at an assembly plant located in Kearny Mesa, San Diego.

<span class="mw-page-title-main">Mercury-Atlas 7</span> 1962 crewed spaceflight within NASAs Project Mercury

Mercury-Atlas 7, launched May 24, 1962, was the fourth crewed flight of Project Mercury. The spacecraft, named Aurora 7, was piloted by astronaut Scott Carpenter. He was the sixth human to fly in space. The mission used Mercury spacecraft No. 18 and Atlas launch vehicle No. 107-D.

<span class="mw-page-title-main">Agena target vehicle</span> Uncrewed spacecraft used during NASAs Gemini program

The Agena Target Vehicle, also known as Gemini-Agena Target Vehicle (GATV), was an uncrewed spacecraft used by NASA during its Gemini program to develop and practice orbital space rendezvous and docking techniques, and to perform large orbital changes, in preparation for the Apollo program lunar missions. The spacecraft was based on Lockheed Aircraft's Agena-D upper stage rocket, fitted with a docking target manufactured by McDonnell Aircraft. The name 'Agena' derived from the star Beta Centauri, also known as Agena. The combined spacecraft was a 26-foot (7.92 m)-long cylinder with a diameter of 5 feet (1.52 m), placed into low Earth orbit with the Atlas-Agena launch vehicle. It carried about 14,000 pounds (6,400 kg) of propellant and gas at launch, and had a gross mass at orbital insertion of about 7,200 pounds (3,300 kg).

<span class="mw-page-title-main">Big Joe 1</span> Uncrewed boilerplate Mercury program capsule

Big Joe 1 (Atlas-10D) launched an uncrewed boilerplate Mercury capsule from Cape Canaveral, Florida on 9 September 1959. The purposes of the Big Joe 1 were to test the Mercury spacecraft ablative heat shield, afterbody heating, reentry dynamics attitude control and recovery capability. It was also the first launch of a spacecraft in Project Mercury.

<span class="mw-page-title-main">Mercury-Atlas 1</span>

Mercury-Atlas 1 (MA-1) was the first attempt to launch a Mercury capsule and occurred on July 29, 1960 at Cape Canaveral, Florida. The spacecraft was unmanned and carried no launch escape system. The Atlas rocket suffered a structural failure 58 seconds after launch at an altitude of approximately 30,000 feet (9.1 km) and 11,000 feet (3.4 km) down range. All telemetry signals suddenly ceased as the vehicle was passing through Max Q. Because the day was rainy and overcast, the booster was out of sight from 26 seconds after launch, and it was impossible to see what happened.

<span class="mw-page-title-main">Mercury-Atlas 4</span>

Mercury-Atlas 4 (MA-4) was an uncrewed test flight within NASA's Project Mercury program, launched on September 13, 1961, at 14:04:16 UTC from Cape Canaveral Air Force Station Launch Complex 14. The mission's primary purpose was to evaluate the Mercury spacecraft's performance in orbit and to test the Mercury Space Flight Network. Despite initial technical challenges, Mercury-Atlas 4 successfully met its goals. The mission involved testing the Mercury spacecraft, specifically Mercury #8A, which completed one orbit around Earth. This successful flight provided important data and insights for NASA's Project Mercury, supporting the planning and development of upcoming crewed missions in the program.

<span class="mw-page-title-main">Mercury-Atlas 2</span>

Mercury-Atlas 2 (MA-2) was an uncrewed test flight of the Mercury program using the Atlas rocket. It launched on February 21, 1961, at 14:10 UTC, from Launch Complex 14 at Cape Canaveral, Florida, United States.

<span class="mw-page-title-main">Atlas-Centaur</span> Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida. After a strenuous flight test program, Atlas-Centaur went on to launch several crucial spaceflight missions for the United States, including Surveyor 1, Mariner 4, and Pioneer 10/11. The vehicle would be continuously developed and improved into the 1990s, with the last direct descendant being the highly successful Atlas II.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

<span class="mw-page-title-main">Atlas (rocket family)</span> Family of American missiles and space launch vehicles

Atlas is a family of US missiles and space launch vehicles that originated with the SM-65 Atlas. The Atlas intercontinental ballistic missile (ICBM) program was initiated in the late 1950s under the Convair Division of General Dynamics. Atlas was a liquid propellant rocket burning RP-1 kerosene fuel with liquid oxygen in three engines configured in an unusual "stage-and-a-half" or "parallel staging" design: two outboard booster engines were jettisoned along with supporting structures during ascent, while the center sustainer engine, propellant tanks and other structural elements remained connected through propellant depletion and engine shutdown.

<span class="mw-page-title-main">SM-65A Atlas</span> First full-scale prototype of the Atlas missile

The Convair SM-65A Atlas, or Atlas A, was the first full-scale prototype of the Atlas missile, which first flew on 11 June 1957. Unlike later versions of the Atlas missile, the Atlas A did not feature the stage and a half design. Instead, the booster engines were fixed in place, and the sustainer engine was omitted. The propulsion system used on the initial Atlas As was an early version of the Rocketdyne MA-1 engines with conical thrust chambers that produced a mere 135,000 pounds of thrust, compared with the 360,000 pounds of the fully operational Atlas D. Several pieces of hardware found on the operational Atlas were either missing on the A-series or only partially implemented. Powered flight on the A-series would last about two minutes and compared to later Atlases, long pad hold-down times, with up to 11 seconds between engine start and launcher release.

<span class="mw-page-title-main">SM-65B Atlas</span> Prototype of the Atlas missile

The Convair SM-65B Atlas, or Atlas B, also designated X-12 was a prototype of the Atlas missile. First flown on 19 July 1958, the Atlas B was the first version of the Atlas rocket to use the stage and a half design with an operational sustainer engine and jettisonable booster engine section. Unlike later Atlas models, the Atlas B used explosive bolts to jettison the booster section.

<span class="mw-page-title-main">SM-65C Atlas</span> Missile

The SM-65C Atlas, or Atlas C was a prototype of the Atlas missile. First flown on 24 December 1958, the Atlas C was the final development version of the Atlas rocket, prior to the operational Atlas D. It was originally planned to be used as the first stage of the Atlas-Able rocket, but following an explosion during a static test on 24 September 1959, this was abandoned in favor of the Atlas D. Atlas C was similar to Atlas B, but had a larger LOX tank and smaller RP-1 tank due to technical changes to the Rocketdyne engines. Improvements in materials and manufacturing processes also resulted in lighter-weight components than the Atlas A and B. Booster burn time was much longer than the A/B series, up to 151 seconds. All launches took place from LC-12 at CCAS.

<span class="mw-page-title-main">SM-65D Atlas</span> First operational version of the U.S. Atlas missile

The SM-65D Atlas, or Atlas D, was the first operational version of the U.S. Atlas missile. Atlas D was first used as an intercontinental ballistic missile (ICBM) to deliver a nuclear weapon payload on a suborbital trajectory. It was later developed as a launch vehicle to carry a payload to low Earth orbit on its own, and later to geosynchronous orbit, to the Moon, Venus, or Mars with the Agena or Centaur upper stage.

<span class="mw-page-title-main">SM-65E Atlas</span>

The SM-65E Atlas, or Atlas-E, was an operational variant of the Atlas missile. It first flew on October 11, 1960, and was deployed as an operational ICBM from September 1961 until April 1966. Following retirement as an ICBM, the Atlas-E, along with the Atlas-F, was refurbished for orbital launches as the Atlas E/F. The last Atlas E/F launch was conducted on March 24, 1995, using a rocket which had originally been built as an Atlas E.

<span class="mw-page-title-main">SM-65F Atlas</span> Missile

The SM-65F Atlas, or Atlas-F, was the final operational variant of the Atlas missile, only differing from the Atlas E in the launch facility and guidance package used. It first flew on 8 August 1961, and was deployed as an operational ICBM between 1961 and 1966. Following retirement as an ICBM, the Atlas-F, along with the Atlas-E, was refurbished for orbital launches as the Atlas E/F.

<span class="mw-page-title-main">Atlas G</span> Expendable launch vehicle

The Atlas G, also known as Atlas G Centaur-D1AR was an American expendable launch system derived from the Atlas-Centaur. It was a member of the Atlas family of rockets and was used to launch seven communication satellites during the mid to late 1980s. Atlas G consisted of an improved Atlas core with modernized avionics and stretched propellant tanks. The Centaur stage also had several updated components and other technical improvements. Atlas G flew 7 times, with all missions aiming to go to a geostationary transfer orbit. It was replaced by the near-identical Atlas I, which had an improved guidance system and offered a larger payload fairing.

The Atlas SLV-3, or SLV-3 Atlas was an American expendable launch system derived from the SM-65 Atlas / SM-65D Atlas missile. It was a member of the Atlas family of rockets.

The Mercury-Redstone Launch Vehicle, designed for NASA's Project Mercury, was the first American crewed space booster. It was used for six sub-orbital Mercury flights from 1960–1961; culminating with the launch of the first, and 11 weeks later, the second American in space. The four subsequent Mercury human spaceflights used the more powerful Atlas booster to enter low Earth orbit.

References

  1. 1 2 Wade, Mark. "Atlas LV-3B / Mercury". Encyclopedia Astronautica. Archived from the original on 11 November 2011. Retrieved 24 November 2011.
  2. 1 2 "Mercury Project Summary (NASA SP-45) Chapter 5 Mercury-Atlas Launch Vehicle Development and Performance". history.nasa.gov. October 1963. Retrieved 19 November 2022.
  3. Limited, Alamy. "Stock Photo – The Mercury Atlas rocket (officially designated the Atlas LV-3 B) was an Atlas D missile modified for Project Mercury launches". Alamy. Retrieved 8 July 2021.
  4. 1 2 "Atlas rocket family". Encyclopedia Astronautica. Retrieved 19 November 2022.
  5. White, J. Terry (29 April 2013). "Project Mercury's Successful Failure". White Eagle Aerospace. Retrieved 25 October 2023.
  6. "Project Mercury » Bricks in Space". 7 November 2020. Retrieved 25 October 2023.
  7. "Atlas SLV-3 Agena D". www.astronautix.com. Retrieved 25 October 2023.