BF model

Last updated

The BF model or BF theory is a topological field, which when quantized, becomes a topological quantum field theory. BF stands for background field B and F, as can be seen below, are also the variables appearing in the Lagrangian of the theory, which is helpful as a mnemonic device.

Contents

We have a 4-dimensional differentiable manifold M, a gauge group G, which has as "dynamical" fields a 2-form B taking values in the adjoint representation of G, and a connection form A for G.

The action is given by

where K is an invariant nondegenerate bilinear form over (if G is semisimple, the Killing form will do) and F is the curvature form

This action is diffeomorphically invariant and gauge invariant. Its Euler–Lagrange equations are

(no curvature)

and

(the covariant exterior derivative of B is zero).

In fact, it is always possible to gauge away any local degrees of freedom, which is why it is called a topological field theory.

However, if M is topologically nontrivial, A and B can have nontrivial solutions globally.

In fact, BF theory can be used to formulate discrete gauge theory. One can add additional twist terms allowed by group cohomology theory such as DijkgraafWitten topological gauge theory. [1] There are many kinds of modified BF theories as topological field theories, which give rise to link invariants in 3 dimensions, 4 dimensions, and other general dimensions. [2]

See also

Related Research Articles

In mathematics, the Chern–Simons forms are certain secondary characteristic classes. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.

<span class="mw-page-title-main">Instanton</span> Solitons in Euclidean spacetime

An instanton is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime.

The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form.

In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all cuprates.

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.

General relativity and supergravity in all dimensions meet each other at a common assumption:

Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite", can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a N = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper Magnetic monopoles as gauge particles? where they state:

There should be two "dual equivalent" field formulations of the same theory in which electric (Noether) and magnetic (topological) quantum numbers exchange roles.

In theoretical physics, p-form electrodynamics is a generalization of Maxwell's theory of electromagnetism.

<span class="mw-page-title-main">Ramond–Ramond field</span>

In theoretical physics, Ramond–Ramond fields are differential form fields in the 10-dimensional spacetime of type II supergravity theories, which are the classical limits of type II string theory. The ranks of the fields depend on which type II theory is considered. As Joseph Polchinski argued in 1995, D-branes are the charged objects that act as sources for these fields, according to the rules of p-form electrodynamics. It has been conjectured that quantum RR fields are not differential forms, but instead are classified by twisted K-theory.

In theoretical physics, topological string theory is a version of string theory. Topological string theory appeared in papers by theoretical physicists, such as Edward Witten and Cumrun Vafa, by analogy with Witten's earlier idea of topological quantum field theory.

In string theory, K-theory classification refers to a conjectured application of K-theory to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable D-branes.

In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

The Hitchin functional is a mathematical concept with applications in string theory that was introduced by the British mathematician Nigel Hitchin. Hitchin (2000) and Hitchin (2001) are the original articles of the Hitchin functional.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

<span class="mw-page-title-main">Yang–Mills equations</span> Partial differential equations whose solutions are instantons

In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the Euler–Lagrange equations of the Yang–Mills action functional. They have also found significant use in mathematics.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In theoretical physics, the curvature renormalization group (CRG) method is an analytical approach to determine the phase boundaries and the critical behavior of topological systems. Topological phases are phases of matter that appear in certain quantum mechanical systems at zero temperature because of a robust degeneracy in the ground-state wave function. They are called topological because they can be described by different (discrete) values of a nonlocal topological invariant. This is to contrast with non-topological phases of matter that can be described by different values of a local order parameter. States with different values of the topological invariant cannot change into each other without a phase transition. The topological invariant is constructed from a curvature function that can be calculated from the bulk Hamiltonian of the system. At the phase transition, the curvature function diverges, and the topological invariant correspondingly jumps abruptly from one value to another. The CRG method works by detecting the divergence in the curvature function, and thus determining the boundaries between different topological phases. Furthermore, from the divergence of the curvature function, it extracts scaling laws that describe the critical behavior, i.e. how different quantities behave as the topological phase transition is approached. The CRG method has been successfully applied to a variety of static, periodically driven, weakly and strongly interacting systems to classify the nature of the corresponding topological phase transitions.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

References

  1. Dijkgraaf, Robbert; Witten, Edward (1990). "Topological Gauge Theories and Group Cohomology". Commun. Math. Phys. 129 (2): 393–429. Bibcode:1990CMaPh.129..393D. doi:10.1007/BF02096988. S2CID   2163226.
  2. Putrov, Pavel; Wang, Juven; Yau, Shing-Tung (September 2017). "Braiding Statistics and Link Invariants of Bosonic/Fermionic Topological Quantum Matter in 2+1 and 3+1 dimensions". Annals of Physics. 384C: 254–287. arXiv: 1612.09298 . Bibcode:2017AnPhy.384..254P. doi:10.1016/j.aop.2017.06.019. S2CID   119578849.