BLISS

Last updated
BLISS
Paradigm Structured, imperative (procedural)
Designed by W. A. Wulf, D. B. Russell, A. N. Habermann
Developer Carnegie Mellon University
First appeared1970;53 years ago (1970)
Stable release
BLISS-64
Typing discipline Typeless
Scope Lexical
Platform PDP-10, PDP-11, VAX, PRISM, MIPS, DEC Alpha, IA-32, IA-64, x86-64
OS Cross-platform
Website pdp-10.trailing-edge.com/bb-m836d-bm/
Dialects
Common BLISS
Influenced by
ALGOL

BLISS is a system programming language developed at Carnegie Mellon University (CMU) by W. A. Wulf, D. B. Russell, and A. N. Habermann around 1970. It was perhaps the best known system language until C debuted a few years later. Since then, C became popular and common, and BLISS faded into obscurity. When C was in its infancy, a few projects within Bell Labs debated the merits of BLISS vs. C.[ citation needed ]

Contents

BLISS is a typeless block-structured programming language based on expressions rather than statements, and includes constructs for exception handling, coroutines, and macros. It does not include a goto statement.

The name is variously said to be short for Basic Language for Implementation of System Software or System Software Implementation Language, Backwards. However, in his 2015 oral history for the Babbage Institute's Computer Security History Project, Wulf claimed that the acronym was originally based on the name "Bill's Language for Implementing System Software." [1]

The original Carnegie Mellon compiler was notable for its extensive use of optimizations, and formed the basis of the classic book The Design of an Optimizing Compiler .

Digital Equipment Corporation (DEC) developed and maintained BLISS compilers for the PDP-10, [2] PDP-11, [2] VAX, [2] DEC PRISM, [3] MIPS, [2] DEC Alpha, [2] and Intel IA-32, [2] The language did not become popular among customers and few had the compiler, [4] but DEC used it heavily in-house into the 1980s; most of the utility programs for the OpenVMS operating system were written in BLISS-32. The DEC BLISS compiler has been ported to the IA-64 and x86-64 architectures as part of the ports of OpenVMS to these platforms. [2] [5] The x86-64 BLISS compiler uses LLVM as its backend code generator, replacing the proprietary GEM backend used for Alpha and IA-64.

Language description

[ excessive quote ]

BLISS has many of the features of other modern high-level languages. It has block structure, an automatic stack, and mechanisms for defining and calling recursive routines ... provides a variety of predefined data structures and ... facilities for testing and iteration ...

On the other hand, BLISS omits certain features of other high-level languages. It does not have built-in facilities for input/output, because a system-software project usually develops its own input/output or builds on basic monitor I/O or screen management services ... it permits access to machine-specific features, because system software often requires this. BLISS has characteristics that are unusual among high-level languages. A name ... is uniformly interpreted as the address of that segment rather than the value of the segment ... Also, BLISS is an "expression language" rather than a "statement language".

This means that every construct of the language that is not a declaration is an expression. Expressions produce a value as well as possibly causing an action such as modification of storage, transfer of control, or execution of a program loop. For example, the counterpart of an assignment "statement" in BLISS is, strictly speaking, an expression that itself has a value. The value of an expression can be either used or discarded in BLISS ... Finally, BLISS includes a macro facility that provides a level of capability usually found only in macro-assemblers.

Bliss Language Manual, Digital Equipment Corporation (1987) [6]

The BLISS language has the following characteristics:

Q = (IF .Z GTR 0 THEN .Z ELSE -.Z);

Source example

The following example is taken verbatim from the Bliss Language Manual: [6]

MODULE E1 (MAIN = CTRL) = BEGIN FORWARD ROUTINE     CTRL,     STEP; ROUTINE CTRL = !+ ! This routine inputs a value, operates on it, and ! then outputs the result. !-     BEGIN     EXTERNAL ROUTINE         GETNUM,     ! Input a number from terminal         PUTNUM;     ! Output a number to terminal     LOCAL         X,          ! Storage for input value         Y;          ! Storage for output value     GETNUM(X);     Y = STEP(.X);     PUTNUM(.Y)     END; ROUTINE STEP(A) = !+ ! This routine adds 1 to the given value. !-     (.A+1); END ELUDOM 

Versions

Notes

  1. https://conservancy.umn.edu/bitstream/handle/11299/178985/oh477waw.pdf?sequence=1&isAllowed=y
  2. 1 2 3 4 5 6 7 Brender, Ronald F. (2002). "The BLISS programming language: a history" (PDF). Software: Practice and Experience. 32 (10): 955–981. doi:10.1002/spe.470. S2CID   45466625.
  3. MacLaren, Don (August 27, 1987). "DECWest Compiler Project, Description, and Plan" (PDF). Bitsavers.org.
  4. da Cruz, Frank (16 September 1987). "News about Kermit Programs for VAX/VMS". Info-Kermit Digest (Mailing list). Kermit Project, Columbia University. Retrieved 5 May 2019. Kermit-32 is written in the Bliss language, DEC's "corporate implementation language" (originally developed at CMU). Bliss never gained popularity among DEC's customers; few sites have Bliss compilers.
  5. "2017 LLVM Developers' Meeting: J. Reagan "Porting OpenVMS using LLVM"". YouTube . 31 October 2017. Archived from the original on 2021-12-21.
  6. 1 2 Bliss Language Manual, Digital Equipment Corporation (1987)

Related Research Articles

<span class="mw-page-title-main">Assembly language</span> Low-level programming language

In computer programming, assembly language, often referred to simply as Assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported.

In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.

C is a general-purpose computer programming language. It was created in the 1970s by Dennis Ritchie, and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems, device drivers, protocol stacks, though decreasingly for application software. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.

PL/I is a procedural, imperative computer programming language developed and published by IBM. It is designed for scientific, engineering, business and system programming. It has been used by academic, commercial and industrial organizations since it was introduced in the 1960s, and is still used.

<span class="mw-page-title-main">Pascal (programming language)</span> Programming language

Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named in honour of the French mathematician, philosopher and physicist Blaise Pascal.

<span class="mw-page-title-main">RSTS/E</span> Computer operating system

RSTS is a multi-user time-sharing operating system developed by Digital Equipment Corporation for the PDP-11 series of 16-bit minicomputers. The first version of RSTS was implemented in 1970 by DEC software engineers that developed the TSS-8 time-sharing operating system for the PDP-8. The last version of RSTS was released in September 1992. RSTS-11 and RSTS/E are usually referred to just as "RSTS" and this article will generally use the shorter form. RSTS-11 supports the BASIC programming language, an extended version called BASIC-PLUS, developed under contract by Evans Griffiths & Hart of Boston. Starting with RSTS/E version 5B, DEC added support for additional programming languages by emulating the execution environment of the RT-11 and RSX-11 operating systems.

IDL, short for Interactive Data Language, is a programming language used for data analysis. It is popular in particular areas of science, such as astronomy, atmospheric physics and medical imaging. IDL shares a common syntax with PV-Wave and originated from the same codebase, though the languages have subsequently diverged in detail. There are also free or costless implementations, such as GNU Data Language (GDL) and Fawlty Language (FL).

BASIC-PLUS is an extended dialect of the BASIC programming language that was developed by Digital Equipment Corporation (DEC) for use on its RSTS/E time-sharing operating system for the PDP-11 series of 16-bit minicomputers in the early 1970s through the 1980s.

FOCAL is an interactive interpreted programming language based on JOSS and mostly used on Digital Equipment Corporation (DEC) Programmed Data Processor (PDP) series machines.

VSI BASIC for OpenVMS is the latest name for a dialect of the BASIC programming language created by Digital Equipment Corporation (DEC) and now owned by VMS Software Incorporated (VSI). It was originally developed as BASIC-PLUS in the 1970s for the RSTS-11 operating system on the PDP-11 minicomputer. It was later ported to OpenVMS, first on VAX, then Alpha, and most recently Integrity.

Harbour is a computer programming language, primarily used to create database/business programs. It is a modernized, open sourced and cross-platform version of the older Clipper system, which in turn developed from the dBase database market of the 1980s and 1990s.

MACRO-11 is an assembly language with macro facilities, designed for PDP-11 minicomputer family from Digital Equipment Corporation (DEC). It is the successor to Program Assembler Loader (PAL-11R), an earlier version of the PDP-11 assembly language without macro facilities.

S-algol is a computer programming language derivative of ALGOL 60 developed at the University of St Andrews in 1979 by Ron Morrison and Tony Davie. The language is a modification of ALGOL to contain orthogonal data types that Morrison created for his PhD thesis. Morrison would go on to become professor at the university and head of the department of computer science. The S-algol language was used for teaching at the university at an undergraduate level until 1999. It was also the language taught for several years in the 1980s at a local school in St. Andrews, Madras College. The computer science text Recursive Descent Compiling describes a recursive descent compiler for S-algol, implemented in S-algol.

Systems Programming Language, often shortened to SPL but sometimes known as SPL/3000, was a procedurally-oriented programming language written by Hewlett-Packard for the HP 3000 minicomputer line and first introduced in 1972. SPL was used to write the HP 3000's primary operating system, Multi-Programming Executive (MPE). Similar languages on other platforms were generically referred to as system programming languages, confusing matters.

Interprocedural optimization (IPO) is a collection of compiler techniques used in computer programming to improve performance in programs containing many frequently used functions of small or medium length. IPO differs from other compiler optimizations by analyzing the entire program as opposed to a single function or block of code.

VAX MACRO is the computer assembly language implementing the VAX instruction set architecture for the OpenVMS operating system, originally released by Digital Equipment Corporation (DEC) in 1977.

In computer programming, a constant is a value that should not be altered by the program during normal execution, i.e., the value is constant. When associated with an identifier, a constant is said to be "named," although the terms "constant" and "named constant" are often used interchangeably. This is contrasted with a variable, which is an identifier with a value that can be changed during normal execution, i.e., the value is variable.

RTL/2 is a discontinued high-level programming language for use in real-time computing, developed at Imperial Chemical Industries, Ltd. (ICI), by J.G.P. Barnes. It was originally used internally in ICI but was distributed by SPL International in 1974. It was based on concepts from ALGOL 68, and intended to be small and simple. RTL/2 was standardised in 1980 by the British Standards Institution.

<span class="mw-page-title-main">BASIC interpreter</span> Interpreter that enables users to enter and run programs in the BASIC language

A BASIC interpreter is an interpreter that enables users to enter and run programs in the BASIC language and was, for the first part of the microcomputer era, the default application that computers would launch. Users were expected to use the BASIC interpreter to type in programs or to load programs from storage.

References

Downloads