Behentrimonium chloride

Last updated
Behentrimonium chloride
Behentrimonium chloride.png
Behentrimonium chloride ball&stick 3d model.png
Names
Preferred IUPAC name
N,N,N-Trimethyldocosan-1-aminium chloride
Other names
Docosyltrimethylammonium chloride, BTAC-228, docosyl-trimethylazanium chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.037.554 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C25H54N.ClH/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26(2,3)4;/h5-25H2,1-4H3;1H/q+1;/p-1 Yes check.svgY
    Key: YSJGOMATDFSEED-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/C25H54N.ClH/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26(2,3)4;/h5-25H2,1-4H3;1H/q+1;/p-1
    Key: YSJGOMATDFSEED-REWHXWOFAO
  • [Cl-].C(CCCC[N+](C)(C)C)CCCCCCCCCCCCCCCCC
Properties
C25H54ClN
Molar mass 404.16 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Behentrimonium chloride, also known as docosyltrimethylammonium chloride or BTAC-228, is a yellow waxlike organic compound with chemical formula C H 3(CH2)21 N(Cl)(CH3)3, used as an antistatic agent and, sometimes, a disinfectant. It is commonly found in cosmetics such as conditioners, hair dye, and mousse, and also in detergents. Laboratory tests have indicated that it does readily biodegrade. [1]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Dimethylmercury</span> Organomercury chemical compound

Dimethylmercury is an extremely toxic organomercury compound with the formula (CH3)2Hg. A volatile, flammable, dense and colorless liquid, dimethylmercury is one of the strongest known neurotoxins. Less than 0.1 mL is capable of inducing severe mercury poisoning resulting in death.

<span class="mw-page-title-main">Quaternary ammonium cation</span> Polyatomic ions of the form N(–R)₄ (charge +1)

In organic chemistry, quaternary ammonium cations, also known as quats, are positively-charged polyatomic ions of the structure [NR4]+, where R is an alkyl group, an aryl group or organyl group. Unlike the ammonium ion and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds are salts of quaternary ammonium cations. Polyquats are a variety of engineered polymer forms which provide multiple quat molecules within a larger molecule.

<span class="mw-page-title-main">Chromium(III) chloride</span> Chemical compound

Chromium(III) chloride (also called chromic chloride) is an inorganic chemical compound with the chemical formula CrCl3. It forms several hydrates with the formula CrCl3·nH2O, among which are hydrates where n can be 5 (chromium(III) chloride pentahydrate CrCl3·5H2O) or 6 (chromium(III) chloride hexahydrate CrCl3·6H2O). The anhydrous compound with the formula CrCl3 are violet crystals, while the most common form of the chromium(III) chloride are the dark green crystals of hexahydrate, CrCl3·6H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

<span class="mw-page-title-main">Acetylacetone</span> Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3−C(=O)−CH2−C(=O)−CH3. It is classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3−C(=O)−CH=C(−OH)−CH3. The mixture is a colorless liquid. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. Acetylacetone is a building block for the synthesis of many coordination complexes as well as heterocyclic compounds.

<span class="mw-page-title-main">Acetyl chloride</span> Organic compound (CH₃COCl)

Acetyl chloride is an acyl chloride derived from acetic acid. It belongs to the class of organic compounds called acid halides. It is a colorless, corrosive, volatile liquid. Its formula is commonly abbreviated to AcCl.

Methylaluminoxane, commonly called MAO, is a mixture of organoaluminium compounds with the approximate formula (Al(CH3)O)n. It is usually encountered as a solution in (aromatic) solvents, commonly toluene but also xylene, cumene, or mesitylene, Used in large excess, it activates precatalysts for alkene polymerization.

<span class="mw-page-title-main">Organic acid anhydride</span> Any chemical compound having two acyl groups bonded to the same oxygen atom

An organic acid anhydride is an acid anhydride that is also an organic compound. An acid anhydride is a compound that has two acyl groups bonded to the same oxygen atom. A common type of organic acid anhydride is a carboxylic anhydride, where the parent acid is a carboxylic acid, the formula of the anhydride being (RC(O))2O. Symmetrical acid anhydrides of this type are named by replacing the word acid in the name of the parent carboxylic acid by the word anhydride. Thus, (CH3CO)2O is called acetic anhydride.Mixed (or unsymmetrical) acid anhydrides, such as acetic formic anhydride (see below), are known, whereby reaction occurs between two different carboxylic acids. Nomenclature of unsymmetrical acid anhydrides list the names of both of the reacted carboxylic acids before the word "anhydride" (for example, the dehydration reaction between benzoic acid and propanoic acid would yield "benzoic propanoic anhydride").

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

In inorganic chemistry, chlorosilanes are a group of reactive, chlorine-containing chemical compounds, related to silane and used in many chemical processes. Each such chemical has at least one silicon-chlorine bond. Trichlorosilane is produced on the largest scale. The parent chlorosilane is silicon tetrachloride.

<span class="mw-page-title-main">Cetrimonium bromide</span> Quaternary ammonium surfactant and antiseptic agent

Cetrimonium bromide, also known with the abbreviation CTAB, is a quaternary ammonium surfactant with a condensed structural formula [(C16H33)N(CH3)3]Br.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

Cetrimonium chloride, or cetyltrimethylammonium chloride (CTAC), is a topical antiseptic and surfactant. Long-chain quaternary ammonium surfactants, such as cetyltrimethylammonium chloride (CTAC), are generally combined with long-chain fatty alcohols, such as stearyl alcohols, in formulations of hair conditioners and shampoos. The cationic surfactant concentration in conditioners is generally of the order of 1–2% and the alcohol concentrations are usually equal to or greater than those of the cationic surfactants. The ternary system, surfactant/fatty alcohol/water, leads to a lamellar structure forming a percolated network giving rise to a gel.

<span class="mw-page-title-main">Bis(trimethylsilyl)sulfide</span> Chemical compound

Bis(trimethylsilyl) sulfide is the chemical compound with the formula ((CH3)3Si)2S. Often abbreviated (tms)2S, this colourless, vile-smelling liquid is a useful aprotic source of "S2−" in chemical synthesis.

Organoarsenic chemistry is the chemistry of compounds containing a chemical bond between arsenic and carbon. A few organoarsenic compounds, also called "organoarsenicals," are produced industrially with uses as insecticides, herbicides, and fungicides. In general these applications are declining in step with growing concerns about their impact on the environment and human health. The parent compounds are arsane and arsenic acid. Despite their toxicity, organoarsenic biomolecules are well known.

Organotellurium chemistry describes the synthesis and properties of organotellurium compounds, chemical compounds containing a carbon-tellurium chemical bond. Organotellurium chemistry is a lightly studied area, in part because of it having few applications.

<span class="mw-page-title-main">Tetramethyltin</span> Chemical compound

Tetramethyltin is an organometallic compound with the formula (CH3)4Sn. This liquid, one of the simplest organotin compounds, is useful for transition-metal mediated conversion of acid chlorides to methyl ketones and aryl halides to aryl methyl ketones. It is volatile and toxic, so care should be taken when using it in the laboratory.

<span class="mw-page-title-main">Tetramethylammonium chloride</span> Chemical compound

Tetramethylammonium chloride is one of the simplest quaternary ammonium salts, with four methyl groups tetrahedrally attached to the central N. The chemical formula (CH3)4N+Cl is often abbreviated further as Me4N+Cl. It is a hygroscopic colourless solid that is soluble in water and polar organic solvents. Tetramethylammonium chloride is a major industrial chemical, being used widely as a chemical reagent and also as a low-residue bactericide in such processes as hydrofracking. In the laboratory, it has fewer synthetic chemical applications than quaternary ammonium salts containing longer N-alkyl substituents, which are used extensively as phase-transfer catalysts.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

<span class="mw-page-title-main">Vilsmeier reagent</span> Chemical compound

The Vilsmeier reagent is an organic compound with the formula [(CH3)2NCHCl]Cl. It is a salt consisting of the N,N-dimethyl­iminium cation ([(CH3)2N=CHCl]+) and chloride anion. Depending on the particular reaction, the anion can vary. In typical POCl3-based reactions, the anion is PO2Cl2. The iminium cation [(CH3)2N=CHCl]+ is the reactive component of interest. This iminium species is a derivative of the imidoyl chloride CH3N=CHCl. Analogues of this particular reagent are generated when tertiary amides other than DMF are treated with POCl3.

References

  1. Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro (2008). "Aquatic Toxicity and Biodegradability of Advanced Cationic Surfactant APA-22 Compatible with the Aquatic Environment". Journal of Oleo Science. 57 (10): 529–538. doi: 10.5650/jos.57.529 . ISSN   1345-8957. PMID   18781053.