Climate change and agriculture in the United States

Last updated

Climate change and agriculture are complexly related processes. In the United States, agriculture is the second largest emitter of greenhouse gases (GHG), behind the energy sector. [1] Direct GHG emissions from the agricultural sector account for 8.4% of total U.S. emissions, but the loss of soil organic carbon through soil erosion indirectly contributes to emissions as well. [2] While agriculture plays a role in propelling climate change, it is also affected by the direct (increase in temperature, change in rainfall, flooding, drought) and secondary (weed, pest, disease pressure, infrastructure damage) consequences of climate change. [1] [3] USDA research indicates that these climatic changes will lead to a decline in yield and nutrient density in key crops, as well as decreased livestock productivity. [4] [5] Climate change poses unprecedented challenges to U.S. agriculture due to the sensitivity of agricultural productivity and costs to changing climate conditions. [6] Rural communities dependent on agriculture are particularly vulnerable to climate change threats. [3]

Contents

The US Global Change Research Program (2017) identified four key areas of concern in the agriculture sector: reduced productivity, degradation of resources, health challenges for people and livestock, and the adaptive capacity of agriculture communities. [3]

Large-scale adaptation and mitigation of these threats relies on changes in farming policy. [2] [7]

Livestock and crop production systems

Projections for crops and livestock production systems reveal that climate change effects over the next 25 years will be mixed. The continued degree of change in the climate by midcentury and beyond is expected to have overall detrimental effects on most crops and livestock. Climate change will exacerbate current biotic stresses on agricultural plants and animals. [6] Increases of atmospheric carbon dioxide (CO2), rising temperatures, and altered precipitation patterns will affect agricultural productivity. Increases in temperature coupled with more variable precipitation will reduce productivity of crops, and these effects will outweigh the benefits of increasing carbon dioxide. Effects will vary among annual and perennial crops, and regions of the United States; however, all production systems will be affected to some degree by climate change. [6]

Livestock production systems are vulnerable to temperature stresses. An animal's ability to adjust its metabolic rate to cope with temperature extremes can lead to reduced productivity and in extreme cases death. Prolonged exposure to extreme temperatures will also further increase production costs and productivity losses associated with all animal products, e.g., meat, eggs, and milk. [6] Grazing lands used for rearing livestock are under increased threats of wildfire. [3]

Soil carbon will be depleted during droughts, depriving crops of an essential element of productivity. [3] In 2012, the US experienced a drought that greatly reduced yield of key crops and livestock in the Great Plans and Midwest region. [3] Average yields of commodity crops (corn, soybean, rice) will decline due to the increased temperature whereas other crops (wheat, hay) could potentially increase yield due to anticipated rainfall in certain regions. [3] Effects on horticulture crops will be variable. [3]

The Southwest region of the United States is one of the hottest and driest regions in the country. [8] Farmers have identified surface and groundwater shortages as being the cause of diminished crop yields. [8] Climate models indicate the likelihood of a decade-scale drought is incredibly high, posing unprecedented stress to the agro-ecosystem. [8]

Weeds, diseases, pests and pollinators

Changing pressures associated with weeds, diseases, and insect pests, together with potential changes in timing and coincidence of pollinator lifecycles, will affect growth and yields. The potential magnitude of these effects is not yet well understood. For example, while some pest insects will thrive under increasing air temperatures, warming temperatures may force others out of their current geographical ranges. Increased global temperature in similar landscapes restricts agricultural opportunities for sustainable pollination patterns, decreases agricultural movement into habitable areas, and reduces climate buffering during environmental threats. [9] Several weeds have shown a greater response to carbon dioxide relative to crops; understanding these physiological and genetic responses may help guide future enhancements to weed management. [6]

Soil and water impacts

Agriculture is dependent on a wide range of ecosystem processes that support productivity including maintenance of soil quality and regulation of water quality and quantity. Multiple stressors, including climate change, increasingly compromise the ability of ecosystems to provide these services. [6]

Key near-term climate change effects on agricultural soil and water resources include the potential for increased soil erosion through extreme precipitation events, as well as regional and seasonal changes in the availability of water resources for both rain-fed and irrigated agriculture. [6] Agricultural systems depend upon reliable water sources, and the pattern and potential magnitude of precipitation changes is not well understood, thus adding considerable uncertainty to assessment efforts. [6]

A regional climate model estimated that California will experience increased heavy precipitation events and change in the form of precipitation (predominantly rain as opposed to snow). [10] Changes in the water management system will be essential for preventing water scarcity and reducing stress on the agricultural system. [10]

Extreme weather

The predicted higher incidence of extreme weather events will have an increasing influence on agricultural productivity. Extremes matter because agricultural productivity is driven largely by environmental conditions during critical threshold periods of crop and livestock development. Improved assessment of climate change effects on agricultural productivity requires greater integration of extreme events into crop and economic models. [6]

Changes in precipitation patterns can cause dry periods to lengthen and rain to become heavier, even in the same area. On one hand, there is an increase in flooding, which can destroy crops and livestock, pollute water, and damage infrastructure. On the other hand, drought can impact the water supply and increase the risk of wildfires. [11]

Human impact on agricultural vulnerability

The vulnerability of agriculture to climatic change is strongly dependent on the responses taken by humans to moderate the effects of climate change. [6]

Changes in crop and livestock viability are forcing the farmers to find better choices of crops and animals, capable of adaption to temperature changes and water availability. This means farmers are obliged to make new investments and re-learn new practices. And as the farmers are coping with the new transformations, they are facing new threats such as diseases, pets, insects. [11]

Role of the US Department of Agriculture

A "USDA Science Blueprint" released in February 2020 focuses on areas from "soil health to weather impacts on agriculture to data collection, and specifically mentions climate change."

A leader at the Union of Concerned Scientists commented, "It is refreshing to see the USDA under Secretary Perdue—who has previously denied the reality of climate change—acknowledging that agriculture is a contributor to climate change, can also be part of the solution, and must adapt in any case." [12]

Concerns remain regarding the cuts to USDA's scientific funding, and the loss of scientific capacity resulting from the decision to move the Economic Research Service (ERS)  and the National Institute of Food and Agriculture (NIFA) away from the Washington DC region. [12]

It is unclear how the plan will impact efforts to involve farmers in the process of carbon sequestration. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Drought</span> Period with less precipitation than normal

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing, with subsequent increased wildfire risks. Heat waves can significantly worsen drought conditions by increasing evapotranspiration. This dries out forests and other vegetation, and increases the amount of fuel for wildfires.

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

Climate change is an urgent and significant issue affecting Japan. In recent years, the country has observed notable changes in its climate patterns, with rising temperatures serving as a prominent indicator of this phenomenon. As an archipelago situated in northeastern Asia, Japan is particularly vulnerable to the impacts of climate change due to its diverse geography and exposure to various weather systems. The nation experiences a broad range of climates, spanning from the frigid winters of Hokkaido to the subtropical climates of Okinawa. Changes in temperature patterns have the potential to disrupt ecosystems, impact agricultural productivity, modify water resources, and pose significant challenges to infrastructure and human settlements.

<span class="mw-page-title-main">Climate change in Nevada</span> Climate change in the US state of Nevada

Climate change in Nevada has been measured over the last century, with the average temperature in Elko, Nevada increasing by 0.6 °F (0.33 °C), and precipitation increasing by up to 20% in many parts of the state. These past trends may or may not continue into the future.

Deficit irrigation (DI) is a watering strategy that can be applied by different types of irrigation application methods. The correct application of DI requires thorough understanding of the yield response to water and of the economic impact of reductions in harvest. In regions where water resources are restrictive it can be more profitable for a farmer to maximize crop water productivity instead of maximizing the harvest per unit land. The saved water can be used for other purposes or to irrigate extra units of land. DI is sometimes referred to as incomplete supplemental irrigation or regulated DI.

The effects of climate change in Saskatchewan are now being observed in parts of the province. There is evidence of reduction of biomass in Saskatchewan's boreal forests that is linked by researchers to drought-related water stress stemming from global warming, most likely caused by greenhouse gas emissions. While studies, as early as 1988 have shown that climate change will affect agriculture, whether the effects can be mitigated through adaptations of cultivars, or crops, is less clear. Resiliency of ecosystems may decline with large changes in temperature. The provincial government has responded to the threat of climate change by introducing a plan to reduce carbon emissions, "The Saskatchewan Energy and Climate Change Plan", in June 2007.

National Innovations in Climate Resilient Agriculture (NICRA) was launched during February 2011 by the Indian Council of Agricultural Research (ICAR) with the funding from the Ministry of Agriculture, Government of India. The mega project has three major objectives of strategic research, technology demonstrations and capacity building. Assessment of the impact of climate change simultaneous with formulation of adaptive strategies is the prime approach under strategic research across all sectors of agriculture, dairying and fisheries.

Climate change in Mexico is expected to have widespread impacts: with significant decreases in precipitation and increases in temperatures. This will put pressure on the economy, people and the biodiversity of many parts of the country, which have largely arid or hot climates. Already climate change has impacted agriculture, biodiversity, farmer livelihoods, and migration, as well as water, health, air pollution, traffic disruption from floods, and housing vulnerability to landslides.

<span class="mw-page-title-main">Effects of climate change on agriculture</span> Effects of climate change on agriculture

There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the currently-rare risk of several regions suffering simultaneous crop failures, which would have significant consequences for the global food supply. Many pests and plant diseases are also expected to either become more prevalent or to spread to new regions. The world's livestock are also expected to be affected by many of the same issues, from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.

<span class="mw-page-title-main">Climate change in Alabama</span> Climate change in the US state of Alabama

Climate change in Alabama encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Alabama.

<span class="mw-page-title-main">Climate change in Colorado</span> Climate change in the US state of Colorado

Climate change in Colorado encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Colorado.

<span class="mw-page-title-main">Climate change in Kansas</span> Climate change in the US state of Kansas

Climate change in Kansas encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Kansas.

<span class="mw-page-title-main">Climate change in Kentucky</span> Climate change in the US state of Kentucky

Climate change in Kentucky encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Kentucky.

<span class="mw-page-title-main">Climate change in Mississippi</span> Climate change in the US state of Mississippi

Climate change in Mississippi encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Mississippi.

<span class="mw-page-title-main">Climate change in North Dakota</span> Climate change in the US state of North Dakota

Climate change in North Dakota encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of North Dakota.

<span class="mw-page-title-main">Climate change in Puerto Rico</span> Climate change in the US territory of Puerto Rico

Climate change has had large impacts on the ecosystems and landscapes of the US territory Puerto Rico. According to a 2019 report by Germanwatch, Puerto Rico is the most affected by climate change. The territory's energy consumption is mainly derived from imported fossil fuels.

<span class="mw-page-title-main">Climate-smart agriculture</span> System for agricultural productivity

Climate-smart agriculture (CSA) is a set of farming methods that has three main objectives with regards to climate change. Firstly, they use adaptation methods to respond to the effects of climate change on agriculture. Secondly, they aim to increase agricultural productivity and to ensure food security for a growing world population. Thirdly, they try to reduce greenhouse gas emissions from agriculture as much as possible. Climate-smart agriculture works as an integrated approach to managing land. This approach helps farmers to adapt their agricultural methods to the effects of climate change.

<span class="mw-page-title-main">Climate change and food security in Africa</span> Climate change and food security

Climate effects of climate change on the availability, usability, and accessibility of food supplies in Africa are referred to as climate change and food security in Africa. The agricultural industry in Africa is experiencing the impacts of climate change, which are manifesting as reduced crop yields, animal mortality, and increased food prices. The global climate is changing as a result of both human activity and natural variability, according to reports. The United Nations Framework Convention on Climate Change (UNFCCC) highlights in its definition that climate change is caused by human activity, either directly or indirectly. Climate change at the global, continental, and sub-continental levels has been observed to include an increase in air and ocean temperatures, sea-level rise, a decrease in snow and ice extent, an increase and decrease in precipitation, changes in terrestrial and marine biological systems, and ocean acidification. Africa's agriculture and climate change are strongly related, Millions of people in Africa depend on the agricultural industry for their economic well-being and means of subsistence. The agricultural industry is responsible for more than 60% of full time employment in Africa. Yet a variety of climate change-related factors such as altered rainfall patterns, rising temperatures, droughts, and floods are having a negative impact on the agricultural industry. Many African populations access to food is being impacted by these effects, which include decreasing crop yields, animal losses, and rising food prices.

<span class="mw-page-title-main">Climate change in Namibia</span>

Climate change is the consequence of long-term alterations in the Earth's climate caused by the emission of greenhouse gases such as carbon dioxide (CO2) and methane (CH4). These gases can trap heat in the atmosphere, resulting in global warming and a heightened temperature on our planet. The activities carried out by humans, such as the utilization of fossil fuels, along with large-scale commercial agriculture and deforestation, are accountable for the release of these greenhouse gases. The escalating temperatures and escalating extreme heat conditions, uncertain and progressively unpredictable precipitation, and extreme weather provoke new challenges and exacerbate existing ones.

<span class="mw-page-title-main">Climate Change in Malawi</span>

Malawi is a land-locked country in southeastern Africa situated along the southernmost arm of the East African Rift-Valley System between latitudes 9°22’ and 17°03’ south of the equator, and longitudes 33°40’ and 35°55’ east of the Greenwich meridian. It shares borders with Tanzania in the north and northeast, Mozambique in the southwest, south, and east, and Zambia in the west. Malawi is highly vulnerable to the effects of climate change as the vast majority of Malawians rely on small-scale, rain-fed agriculture, making them highly dependent on weather patterns. Climate change increasingly exacerbates droughts, flooding, and inconsistent rainfall—contributing to food insecurity and threatening to derail progress toward Malawi’s goal of self-reliance.

References

  1. 1 2 Center for Climate and Energy Solutions. 2019. "Science and Impacts".https://www.c2es.org/site/assets/uploads/2019/09/science-and-impacts.pdf
  2. 1 2 National Sustainable Agriculture Coalition. 2019. Agriculture and Climate Change: Policy Imperatives and Opportunities to Help Producers Meet the Challenge. Washington D.C.
  3. 1 2 3 4 5 6 7 8 USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume II[Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, US, 470 pp, doi : 10.7930/J0J964J6.
  4. Evich, Helena Bottemiller (2019-09-19). "Senate Democrats release list of climate studies buried by Trump administration". POLITICO. Retrieved 2019-10-25.
  5. US Senate Committee on Agriculture, Nutrition and Forestry. "Peer-Reviewed Research on Climate Change by USDA Authors, January 2017-August 2019". Politico . Retrieved 2019-10-25.
  6. 1 2 3 4 5 6 7 8 9 10 USDA Agricultural Research Service, Climate Change Program Office (2013). "Climate Change and Agriculture in the United States: Effects and Adaptation" (PDF). United States Department of Agriculture. USDA Technical Bulletin 1935. pp. 1–2. Archived from the original (PDF) on 2022-05-13. Retrieved 2019-10-15.
  7. Carlisle, Liz, Maywa Montenegro de Wit, Marcia S. DeLonge, Alastair Iles, Adam Calo, Christy Getz, Joanna Ory, Katherine Munden-Dixon, Ryan Galt, Brett Melone, Reggie Knox, and Daniel Press. 2019. "Transitioning to Sustainable Agriculture Requires Growing and Sustaining an Ecologically Skilled Workforce." Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2019.00096
  8. 1 2 3 Elias, E.H.; Flynn, R.; Idowu, O.J.; Reyes, J.; Sanogo, S.; Schutte, B.J.; Smith, R.; Steele, C.; Sutherland, C. Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production. Sustainability 2019, 11, 6619. doi : 10.3390/su11236619
  9. Vasiliev, Denis; Greenwood, Sarah (25 June 2021). "The role of climate change in pollinator decline across the Northern Hemisphere is underestimated". Science of the Total Environment. 775: 145788. Bibcode:2021ScTEn.775n5788V. doi:10.1016/j.scitotenv.2021.145788. ISSN   0048-9697. PMID   33618305. S2CID   232017603 . Retrieved 20 October 2022.
  10. 1 2 Persad, G.G., Swain, D.L., Kouba, C. et al. Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management. Climatic Change 162, 1493–1513 (2020). https://doi.org/10.1007/s10584-020-02882-4
  11. 1 2 "Climate Change and Agriculture | Union of Concerned Scientists". www.ucsusa.org. Retrieved 2021-05-09.
  12. 1 2 3 Gustin, Georgina (2020-02-08). "Is Trump's USDA Ready to Address Climate Change? There are Hopeful Signs". InsideClimate News. Archived from the original on 2020-10-28. Retrieved 2020-02-08.