Computable analysis

Last updated

In mathematics and computer science, computable analysis is the study of mathematical analysis from the perspective of computability theory. It is concerned with the parts of real analysis and functional analysis that can be carried out in a computable manner. The field is closely related to constructive analysis and numerical analysis.

Contents

A notable result is that integration (in the sense of the Riemann integral) is computable. [1] This might be considered surprising as an integral is (loosely speaking) an infinite sum. While this result could be explained by the fact that every computable function from to is uniformly continuous, the notable thing is that the modulus of continuity can always be computed without being explicitly given. A similarly surprising fact is that differentiation of complex functions is also computable, [2] while the same result is false for real functions. [3]

The above motivating results have no counterpart in Bishop's constructive analysis. Instead, it is the stronger form of constructive analysis developed by Brouwer that provides a counterpart in constructive logic.

Basic constructions

A popular model for doing computable analysis is Turing machines. The tape configuration and interpretation of mathematical structures are described as follows.

Type 2 Turing Machines

A Type 2 Turing machine is a Turing machine with three tapes: An input tape, which is read-only; a working tape, which can be written to and read from; and, notably, an output tape, which is "append-only".

Real numbers

In this context, real numbers are represented as arbitrary infinite sequences of symbols. These sequences could for instance represent the digits of a real number. Such sequences need not be computable — this freedom is both an important one and philosophically unproblematic. [4] Note that the programs that act on these sequences do need to be computable in a reasonable sense.

In the case of real numbers, the usual decimal or binary representations are not appropriate. Instead a signed digit representation first suggested by Brouwer often gets used: The number system is base 2, but the digits are (representing ), 0 and 1. In particular, this means can be represented both as and .

To understand why decimal notation is inappropriate, consider the problem of computing where and , and giving the result in decimal notation. The value of is either or . If the latter result were given for instance, then a finite number of digits of would be read before choosing the digit before the decimal point in — but then if the th digit of were decreased to 2, then the result for would be wrong. Similarly, the former choice for would be wrong sometimes. This is essentially the tablemaker's dilemma.

As well as signed digits, there are analogues of Cauchy sequences and Dedekind cuts that could in principle be used instead.

Computable functions

Computable functions are represented as programs on a Type 2 Turing machine. A program is considered total (in the sense of a total function as opposed to partial function) if it takes finite time to write any number of symbols on the output tape regardless of the input. A total programs run forever, generating increasingly more digits of the output.

Names

Results about computability associated with infinite sets often involve namings, which are maps between those sets and recursive representations of subsets thereof. A naming on a set gives rise to a topology over that set, as elaborated upon below.

Discussion

The issue of Type 1 versus Type 2 computability

Type 1 computability is the naive form of computable analysis in which one restricts the inputs to a machine to be computable numbers instead of arbitrary real numbers.

The difference between the two models lies in the fact that a program that is well-behaved over computable numbers (in the sense of being total) is not necessarily well-behaved over arbitrary real numbers. For instance, there are computable functions over the computable real numbers that map some bounded closed intervals to unbounded open intervals. [5] These functions cannot be extended to arbitrary real numbers (without making them partial), as all computable functions are continuous, and this would then violate the extreme value theorem. Since that sort of behaviour could be considered pathological, it is natural to insist that a function should only be considered total if it is total over all real numbers, not just the computable ones.

Realisability

In the event that one is unhappy with using Turing machines (on the grounds that they are low level and somewhat arbitrary), there is a realisability topos called the Kleene–Vesley topos in which one can reduce computable analysis to constructive analysis . This constructive analysis includes everything that is valid in the Brouwer school, and not just the Bishop school. [6] Additionally, a theorem in this school of constructive analysis is that not all real numbers are computable, which is constructively non-equivalent to there exist uncomputable numbers. This school of constructive analysis is therefore in direct contradiction to schools of constructive analysis — such as Markov's — which claim that all functions are computable. It ultimately shows that while constructive existence implies computability, it is in fact unproblematic — even useful — to assert that not every function is computable.

Basic results

Analogy between general topology and computability theory

One of the basic results of computable analysis is that every computable function from to is continuous. [7] Taking this further, this suggests that there is an analogy between basic notions in topology and basic notions in computability:

The analogy suggests that general topology and computability are nearly mirror images of each other. The analogy has been made rigorous in the case of locally compact spaces. [9] This has resulted in the creation of sub-areas of general topology like domain theory which study topological spaces very unlike the Hausdorff spaces studied by most people in mathematical analysis — these spaces become natural under the analogy.

See also

Notes

  1. See Simpson, Alex K. (1998), Brim, Luboš; Gruska, Jozef; Zlatuška, Jiří (eds.), "Lazy functional algorithms for exact real functionals", Mathematical Foundations of Computer Science 1998, Lecture Notes in Computer Science, vol. 1450, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 456–464, doi:10.1007/bfb0055795, ISBN   978-3-540-64827-7
  2. by Cauchy's integral formula.
  3. because discontinuous operators are automatically uncomputable.
  4. An uncomputable real number can be generated with near certainty by sampling each digit at random in an infinite unending process.
  5. Bauer, Andrej. "Kőnig's Lemma and Kleene Tree" (PDF).
  6. Yumpu.com. "The Realizability Approach to Computable Analysis ... - Andrej Bauer". yumpu.com. Retrieved 2023-08-18.
  7. 1 2 Weihrauch 2000, p. 6.
  8. Myhill, J. (1971). "A recursive function, defined on a compact interval and having a continuous derivative that is not recursive". Michigan Mathematical Journal. 18 (2). doi: 10.1307/mmj/1029000631 . ISSN   0026-2285.
  9. "abstract Stone duality in nLab". ncatlab.org. Retrieved 2023-07-29.

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.

<span class="mw-page-title-main">Computable number</span> Real number that can be computed within arbitrary precision

In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals. The concept of a computable real number was introduced by Emile Borel in 1912, using the intuitive notion of computability available at the time.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.

<span class="mw-page-title-main">Cantor's diagonal argument</span> Proof in set theory

Cantor's diagonal argument is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers. Such sets are now called uncountable sets, and the size of infinite sets is treated by the theory of cardinal numbers, which Cantor began.

<span class="mw-page-title-main">Semi-continuity</span> Property of functions which is weaker than continuity

In mathematical analysis, semicontinuity is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is uppersemicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher than

In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.

In computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:

In mathematics, the Gelfand representation in functional analysis is either of two things:

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis.

In several mathematical areas, including harmonic analysis, topology, and number theory, locally compact abelian groups are abelian groups which have a particularly convenient topology on them. For example, the group of integers, or the real numbers or the circle are locally compact abelian groups.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions.

In computability theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.

<span class="mw-page-title-main">Real number</span> Number representing a continuous quantity

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.

References