Cotesia rubecula

Last updated

Cotesia rubecula
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Braconidae
Genus: Cotesia
Species:
C. rubecula
Binomial name
Cotesia rubecula
(Marshall, 1885)
Synonyms

Apanteles rubeculaMarshall, 1885 [1]

Cotesia rubecula is a parasitoid wasp from the large wasp family Braconidae.

Contents

Description

Black in adulthood with a body less than 1/4 of an inch long, C. rubecula has long, extending antenna about the same size as its body.

Distribution and habitat

Cotesia rubecula is not common, established in only a few areas of the world. Originally native to China, the parasite has been introduced as biological pest control in North America, specifically in New England. [2] The population dies down during winter months with a population bubble in late summer related to the growth of its host species.

Reproduction and lifecycle

The mating system of C. rubecula is polygynous. Mate-guarding, a process in which a member of a species prevents another member of the same species from mating with their partner, is seen in C. rubecula. Males are attracted to females through pheromones and they induce females to mate through vibrations, to which the female responds by assuming a specific position. When a male who has copulated with a female sees another male trying to court her, he will often adopt the female receptive position. Post-copulatory female mimicry by the male offers an advantage by acting as a mate-guarding mechanism. If a second male arrives soon enough after the female copulates with the first male, the second male may be able to induce a second copulation which will compete with the first one. However, if the first male who copulated with her mimics the female, it distracts the second male long enough that the female becomes unreceptive. [3]

Cotesia rubecula parasitizes the cabbage worm caterpillar, generally in the stage of first instar, with the female wasp stinging and laying between 20 and 50 eggs within the host instar. The defense mechanism of the caterpillars can sometimes kill the eggs. If they do not, the caterpillar does not die until the larvae of the wasp emerge. The impact on the host population can vary greatly, from a small percentage to up to 75% of the caterpillars in a given habitat.

Related Research Articles

<span class="mw-page-title-main">Ichneumonoidea</span> Superfamily of wasps

The superfamily Ichneumonoidea contains one extinct and three extant families, including the two largest families within Hymenoptera: Ichneumonidae and Braconidae. The group is thought to contain as many as 100,000 species, many of which have not yet been described. Like other parasitoid wasps, they were long placed in the "Parasitica", variously considered as an infraorder or an unranked clade, now known to be paraphyletic.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by its larger size and the black band at the tip of its forewings.

<span class="mw-page-title-main">Hyperparasite</span> Parasite of another parasite

A hyperparasite, also known as a metaparasite, is a parasite whose host, often an insect, is also a parasite, often specifically a parasitoid. Hyperparasites are found mainly among the wasp-waisted Apocrita within the Hymenoptera, and in two other insect orders, the Diptera and Coleoptera (beetles). Seventeen families in Hymenoptera and a few species of Diptera and Coleoptera are hyperparasitic. Hyperparasitism developed from primary parasitism, which evolved in the Jurassic period in the Hymenoptera. Hyperparasitism intrigues entomologists because of its multidisciplinary relationship to evolution, ecology, behavior, biological control, taxonomy, and mathematical models.

<span class="mw-page-title-main">Cabbage moth</span> Species of moth

The cabbage moth is primarily known as a pest that is responsible for severe crop damage of a wide variety of plant species. The common name, cabbage moth, is a misnomer as the species feeds on many fruits, vegetables, and crops in the genus Brassica. Other notable host plants include tobacco, sunflower, and tomato, making this pest species particularly economically damaging.

<span class="mw-page-title-main">Almond moth</span> Species of moth

The almond moth or tropical warehouse moth is a small, stored-product pest. Almond moths infest flour, bran, oats, and other grains, as well as dried fruits. It belongs to the family of snout moths (Pyralidae), and more specifically to the tribe Phycitini of the huge snout moth subfamily Phycitinae. This species may be confused with the related Indian mealmoth or the Mediterranean flour moth, which are also common pantry pests in the same subfamily.

<span class="mw-page-title-main">Braconidae</span> Family of wasps

The Braconidae are a family of parasitoid wasps. After the closely related Ichneumonidae, braconids make up the second-largest family in the order Hymenoptera, with about 17,000 recognized species and many thousands more undescribed. One analysis estimated a total between 30,000 and 50,000, and another provided a narrower estimate between 42,000 and 43,000 species.

<span class="mw-page-title-main">Parasitoid wasp</span> Group of wasps

Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.

<i>Cotesia congregata</i> Species of wasp

Cotesia congregata is a parasitoid wasp of the genus Cotesia. The genus is particularly noted for its use of polydnaviruses. Parasitoids are distinct from true parasites in that a parasitoid will ultimately kill its host or otherwise sterilize it.

<i>Glyptapanteles</i> Genus of wasps

Glyptapanteles is a genus of endoparasitoid wasps found in all continents, except Antarctica. The larvae of Glyptapanteles species are able to manipulate their hosts into serving as bodyguards.

<span class="mw-page-title-main">Wasp</span> Group of insects

A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<i>Eldana</i> Genus of moths

Eldana is a genus of moths of the family Pyralidae containing only one species, the African sugar-cane borer, which is commonly found in Equatorial Guinea, Ghana, Mozambique, Sierra Leone and South Africa. Adults have pale brown forewings with two small spots in the centre and light brown hindwings, and they have a wingspan of 35mm. This species is particularly relevant to humans because the larvae are a pest of the Saccharum species as well as several grain crops such as sorghum and maize. Other recorded host plants are cassava, rice and Cyperus species. When attacking these crops, E. saccharina bores into the stems of their host plant, causing severe damage to the crop. This behavior is the origin of the E. saccharrina's common name, the African sugar-cane borer. The African sugar-cane borer is a resilient pest, as it can survive crop burnings. Other methods such as intercropping and parasitic wasps have been employed to prevent further damage to crops.

<i>Dinocampus coccinellae</i> Species of insect

Dinocampus coccinellae is a braconid wasp parasite of coccinellid beetles, including the spotted lady beetle, Coleomegilla maculata. D. coccinellae has been described as turning its ladybird host into a temporary "zombie" guarding the wasp cocoon. About 25% of Coleomegilla maculata recover after the cocoon they are guarding matures, although the proportion of other ladybird species which recover is much lower.

<i>Cotesia glomerata</i> Species of wasp

Cotesia glomerata, the white butterfly parasite, is a small parasitoid wasp belonging to family Braconidae. It was described by Carl Linnaeus in his 1758 publication 10th edition of Systema Naturae.

<i>Cotesia</i> Genus of wasps

Cotesia is a genus of braconid wasps first described by Peter Cameron in 1891. Some species parasitize caterpillars of species considered pests, and are used as biocontrol agents. Cotesia congregata parasitizes the tomato and the tobacco hornworms. C. glomerata and C. rubecula feed on the cabbage white and other white butterfly caterpillars. C. gonopterygis and C. risilis are host-specific and parasitize the common brimstone.

<i>Anastrepha suspensa</i> Species of fly

Anastrepha suspensa, known as the Caribbean fruit fly, the Greater Antillean fruit fly, guava fruit fly, or the Caribfly, is a species of tephritid fruit fly. As the names suggest, these flies feed on and develop in a variety of fruits, primarily in the Caribbean. They mainly infest mature to overripe fruits. While thought to have originated in Cuba, the Caribbean fruit fly can now also be found in Florida, Hispaniola, and Puerto Rico.

<i>Lysibia nana</i> Species of wasp

Lysibia nana is a hyperparasitoid wasp that attacks the parasitoid wasp Cotesia glomerata.

Bracovirus is a genus of viruses, in the family Polydnaviridae. Bracoviruses are an ancient symbiotic virus contained in parasitic braconid wasps that evolved off of the nudivirus about 190 million years ago and has been evolving at least 100 million years. It is one of two genera belonging to the Polydnaviridae family, Ichnovirus being the other genus. There are 32 species in this genus.

<i>Hemileuca lucina</i> Species of moth

Hemileuca lucina, the New England buck moth, is a species of moth in the family Saturniidae. This moth species is only found in the New England region of the United States. Larvae in early stages mainly feed on broadleaf meadowsweet whereas larvae in later stages show variation in food sources such as blackberry and black cherry leaves. Larvae have a black body with orange/black spines on their back that are used to deter predators. Pupation occurs during the summer and adult moths come out around September.

<i>Diachasmimorpha longicaudata</i> Species of wasp

Diachasmimorpha longicaudata is a solitary species of parasitoid wasp and an endoparasitoid of tephritid fruit fly larvae. D. longicaudata is native to many countries in Southeast Asia and subtropical regions and has also been introduced to many other countries as a biological control agent. It is now considered the most extensively used parasitoid for biocontrol of fruit flies in both the southern portion of the United States and Latin America. D. longicaudata is especially useful for agricultural purposes in the control of fruit flies as it is easily mass-reared and has the ability to infect a variety of hosts within the genus Bactrocera. A negative factor in its use as a biocontrol agent is that it is known to oviposit in grapefruit in the state of Florida. This has resulted in quarantines on grapefruit shipped internationally as well as domestically. Research is ongoing to determine whether D. longicaudata is actually a single species, or if it contains multiple species. It is likely multiple biological species separated by both reproductive isolation and morphological characteristics such as wing geometry.

References

  1. Marshall T. A., 1885. Monograph of British Braconidae. Part I. Transactions of the Entomological Society of London. 280 pp.
  2. Van Driesche, R. G. (2008). "Biological Control of Pieris rapae in New England: Host Suppression and Displacement of Cotesia glomerata by Cotesia rubecula (Hymenoptera: Braconidae)". The Florida Entomologist. 91 (1): 22–25. doi:10.1653/0015-4040(2008)091[0022:BCOPRI]2.0.CO;2. ISSN   0015-4040. JSTOR   20065922 . Retrieved 14 July 2022.
  3. Field, Scott A.; Keller, Michael A. (December 1993). "Alternative mating tactics and female mimicry as post-copulatory mate-guarding behaviour in the parasitic wasp Cotesia rubecula". Animal Behaviour . 46 (6): 1183–1189. doi:10.1006/anbe.1993.1308. S2CID   54325074.