Countably barrelled space

Last updated

In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces.

Contents

Definition

A TVS X with continuous dual space is said to be countably barrelled if is a weak-* bounded subset of that is equal to a countable union of equicontinuous subsets of , then is itself equicontinuous. [1] A Hausdorff locally convex TVS is countably barrelled if and only if each barrel in X that is equal to the countable intersection of closed convex balanced neighborhoods of 0 is itself a neighborhood of 0. [1]

σ-barrelled space

A TVS with continuous dual space is said to be σ-barrelled if every weak-* bounded (countable) sequence in is equicontinuous. [1]

Sequentially barrelled space

A TVS with continuous dual space is said to be sequentially barrelled if every weak-* convergent sequence in is equicontinuous. [1]

Properties

Every countably barrelled space is a countably quasibarrelled space, a σ-barrelled space, a σ-quasi-barrelled space, and a sequentially barrelled space. [1] An H-space is a TVS whose strong dual space is countably barrelled. [1]

Every countably barrelled space is a σ-barrelled space and every σ-barrelled space is sequentially barrelled. [1] Every σ-barrelled space is a σ-quasi-barrelled space. [1]

A locally convex quasi-barrelled space that is also a 𝜎-barrelled space is a barrelled space. [1]

Examples and sufficient conditions

Every barrelled space is countably barrelled. [1] However, there exist semi-reflexive countably barrelled spaces that are not barrelled. [1] The strong dual of a distinguished space and of a metrizable locally convex space is countably barrelled. [1]

Counter-examples

There exist σ-barrelled spaces that are not countably barrelled. [1] There exist normed DF-spaces that are not countably barrelled. [1] There exists a quasi-barrelled space that is not a 𝜎-barrelled space. [1] There exist σ-barrelled spaces that are not Mackey spaces. [1] There exist σ-barrelled spaces that are not countably quasi-barrelled spaces and thus not countably barrelled. [1] There exist sequentially barrelled spaces that are not σ-quasi-barrelled. [1] There exist quasi-complete locally convex TVSs that are not sequentially barrelled. [1]

See also

Related Research Articles

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki (1950).

In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.

In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by that property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.

In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) X such that the canonical evaluation map from X into its bidual is bijective. If this map is also an isomorphism of TVSs then it is called reflexive.

The Mackey–Arens theorem is an important theorem in functional analysis that characterizes those locally convex vector topologies that have some given space of linear functionals as their continuous dual space. According to Narici (2011), this profound result is central to duality theory; a theory that is "the central part of the modern theory of topological vector spaces."

In mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves.

A locally convex topological vector space (TVS) is B-complete or a Ptak space if every subspace is closed in the weak-* topology on whenever is closed in for each equicontinuous subset .

In the field of functional analysis, DF-spaces, also written (DF)-spaces are locally convex topological vector space having a property that is shared by locally convex metrizable topological vector spaces. They play a considerable part in the theory of topological tensor products.

In functional analysis, a topological vector space (TVS) is called ultrabornological if every bounded linear operator from into another TVS is necessarily continuous. A general version of the closed graph theorem holds for ultrabornological spaces. Ultrabornological spaces were introduced by Alexander Grothendieck.

In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non-metrizable TVSs.

In mathematics, specifically in order theory and functional analysis, a locally convex vector lattice (LCVL) is a topological vector lattice that is also a locally convex space. LCVLs are important in the theory of topological vector lattices.

In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals are contained in the weak-* closure of some bounded subset of the bidual.

In functional analysis, a topological vector space (TVS) is said to be countably quasi-barrelled if every strongly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of quasibarrelled spaces.

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

In functional analysis and related areas of mathematics, a quasi-ultrabarrelled space is a topological vector spaces (TVS) for which every bornivorous ultrabarrel is a neighbourhood of the origin.

References