Cubilin

Last updated
CUBN
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CUBN , IFCR, MGA1, gp280, cubilin, IGS, IGS1
External IDs OMIM: 602997 MGI: 1931256 HomoloGene: 37434 GeneCards: CUBN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001081

NM_001081084

RefSeq (protein)

NP_001072

NP_001074553

Location (UCSC) Chr 10: 16.82 – 17.13 Mb Chr 2: 13.28 – 13.5 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cubilin is a protein that in humans is encoded by the CUBN gene. [5] [6] [7]

Contents

Function

Cubilin (CUBN) acts as a receptor for intrinsic factor-vitamin B12 complexes. The role of receptor is supported by the presence of 27 CUB domains. Cubilin shows a restricted mode of expression according to protein profiling and transcriptomics analyses, [8] and is essentially only present in the kidneys and small intestine. [9] Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. [7] A complex of amnionless and cubilin forms the cubam receptor.

Clinical significance

Cubilin is a potential diagnostic and prognostic cancer biomarker for kidney cancer. [10] Based on patient survival data, high levels of cubilin in tumor cells is a favourable prognostic biomarker in renal cell carcinoma. [11] [12]

Related Research Articles

<span class="mw-page-title-main">Intrinsic factor</span> Glycoprotein produced in the stomach which binds to vitamin B12

Intrinsic factor (IF), cobalamin binding intrinsic factor, also known as gastric intrinsic factor (GIF), is a glycoprotein produced by the parietal cells (in humans) or chief cells (in rodents) of the stomach. It is necessary for the absorption of vitamin B12 later on in the distal ileum of the small intestine. In humans, the gastric intrinsic factor protein is encoded by the CBLIF gene. Haptocorrin (transcobalamin I) is another glycoprotein secreted by the salivary glands which binds to vitamin B12. Vitamin B12 is acid-sensitive and in binding to haptocorrin it can safely pass through the acidic stomach to the duodenum.

<span class="mw-page-title-main">Pernicious anemia</span> Anemia caused by vitamin B12 deficiency

Pernicious anemia is a disease where not enough red blood cells are produced due to a deficiency of vitamin B12. Those affected often have a gradual onset. The most common initial symptoms are feeling tired and weak. Other symptoms may include shortness of breath, feeling faint, a smooth red tongue, pale skin, chest pain, nausea and vomiting, loss of appetite, heartburn, numbness in the hands and feet, difficulty walking, memory loss, muscle weakness, poor reflexes, blurred vision, clumsiness, depression, and confusion. Without treatment, some of these problems may become permanent.

<span class="mw-page-title-main">Pleiotrophin</span> Protein in humans

Pleiotrophin (PTN) also known as heparin-binding brain mitogen (HBBM) or heparin-binding growth factor 8 (HBGF-8) or neurite growth-promoting factor 1 (NEGF1) or heparin affinity regulatory peptide (HARP) or heparin binding growth associated molecule (HB-GAM) is a protein that in humans is encoded by the PTN gene. Pleiotrophin is an 18-kDa growth factor that has a high affinity for heparin. It is structurally related to midkine and retinoic acid induced heparin-binding protein.

<span class="mw-page-title-main">Transferrin receptor</span> Family of transport proteins

Transferrin receptor (TfR) is a carrier protein for transferrin. It is needed for the import of iron into cells and is regulated in response to intracellular iron concentration. It imports iron by internalizing the transferrin-iron complex through receptor-mediated endocytosis. The existence of a receptor for transferrin iron uptake has been recognized since the late 1950s. Earlier two transferrin receptors in humans, transferrin receptor 1 and transferrin receptor 2 had been characterized and until recently cellular iron uptake was believed to occur chiefly via these two well documented transferrin receptors. Both these receptors are transmembrane glycoproteins. TfR1 is a high affinity ubiquitously expressed receptor while expression of TfR2 is restricted to certain cell types and is unaffected by intracellular iron concentrations. TfR2 binds to transferrin with a 25-30 fold lower affinity than TfR1. Although TfR1 mediated iron uptake is the major pathway for iron acquisition by most cells and especially developing erythrocytes, several studies have indicated that the uptake mechanism varies depending upon the cell type. It is also reported that Tf uptake exists independent of these TfRs although the mechanisms are not well characterized. The multifunctional glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase has been shown to utilize post translational modifications to exhibit higher order moonlighting behavior wherein it switches its function as a holo or apo transferrin receptor leading to either iron delivery or iron export respectively.

<span class="mw-page-title-main">Nuclear receptor coactivator 2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2).

<span class="mw-page-title-main">Fibroblast growth factor receptor 4</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 4 is a protein that in humans is encoded by the FGFR4 gene. FGFR4 has also been designated as CD334.

<span class="mw-page-title-main">Death receptor 4</span> Protein found in humans

Death receptor 4 (DR4), also known as TRAIL receptor 1 (TRAILR1) and tumor necrosis factor receptor superfamily member 10A (TNFRSF10A), is a cell surface receptor of the TNF-receptor superfamily that binds TRAIL and mediates apoptosis.

<span class="mw-page-title-main">Sodium-hydrogen antiporter 3 regulator 1</span> Protein-coding gene in the species Homo sapiens

Sodium-hydrogen antiporter 3 regulator 1 is a regulator of Sodium-hydrogen antiporter 3. It is encoded by the gene SLC9A3R1. It is also known as ERM Binding Protein 50 (EBP50) or Na+/H+ Exchanger Regulatory Factor (NHERF1). It is believed to interact via long-range allostery, involving significant protein dynamics.

<span class="mw-page-title-main">LRP2</span> Mammalian protein found in Homo sapiens

Low density lipoprotein receptor-related protein 2 also known as LRP-2 or megalin is a protein which in humans is encoded by the LRP2 gene.

<span class="mw-page-title-main">GAS6</span> Human gene coding for the GAS6 protein

Growth arrest – specific 6, also known as GAS6, is a human gene coding for the GAS6 protein. It is similar to the Protein S with the same domain organization and 43% amino acid identity. It was originally found as a gene upregulated by growth arrested fibroblasts.

<span class="mw-page-title-main">Alpha-1B adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-1B adrenergic receptor1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin.

Vitamin B<sub><small>12</small></sub> Vitamin used in animal cells metabolism

Vitamin B12, also known as cobalamin, is a water-soluble vitamin involved in metabolism. It is one of eight B vitamins. It is required by animals, which use it as a cofactor in DNA synthesis, and in both fatty acid and amino acid metabolism. It is important in the normal functioning of the nervous system via its role in the synthesis of myelin, and in the circulatory system in the maturation of red blood cells in the bone marrow. Plants do not need cobalamin and carry out the reactions with enzymes that are not dependent on it.

<span class="mw-page-title-main">Nicotinate-nucleotide—dimethylbenzimidazole phosphoribosyltransferase</span> Class of enzymes

In enzymology, a nicotinate-nucleotide-dimethylbenzimidazole phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GRB14</span> Protein-coding gene in the species Homo sapiens

Growth factor receptor-bound protein 14 is a protein that in humans is encoded by the GRB14 gene.

<span class="mw-page-title-main">IRS4</span> Protein-coding gene in the species Homo sapiens

Insulin receptor substrate 4 is a protein that in humans is encoded by the IRS4 gene.

<span class="mw-page-title-main">RASA3</span> Protein-coding gene in the species Homo sapiens

Ras GTPase-activating protein 3 is an enzyme that in humans is encoded by the RASA3 gene.

<span class="mw-page-title-main">MMACHC</span> Protein-coding gene in the species Homo sapiens

Methylmalonic aciduria and homocystinuria type C protein (MMACHC) is a protein that in humans is encoded by the MMACHC gene.

<span class="mw-page-title-main">Amnionless</span> Protein-coding gene in the species Homo sapiens

Amnionless is a protein that in humans is encoded by the AMN gene.

<span class="mw-page-title-main">Imerslund–Gräsbeck syndrome</span> Medical condition

Imerslund–Gräsbeck syndrome is a rare autosomal recessive, familial form of vitamin B12 deficiency caused by malfunction of the "Cubam" receptor located in the terminal ileum. This receptor is composed of two proteins, amnionless (AMN), and cubilin. A defect in either of these protein components can cause this syndrome. This is a rare disease, with a prevalence about 1 in 200,000, and is usually seen in patients of European ancestry.

Cubam, is the term used to refer to a multi-ligand receptor located in the terminal ileum, specializing in absorption of vitamin B12. Cubam is essentially composed of amnionless (AMN), and cubilin. Cubilin is essential as a cell receptor recognizing the "vitamin B12-intrinsic factor" complex, whereas amnionless is more involved in the receptor mediated endocytosis of the complex.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000107611 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026726 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kozyraki R, Kristiansen M, Silahtaroglu A, Hansen C, Jacobsen C, Tommerup N, Verroust PJ, Moestrup SK (Jun 1998). "The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region". Blood. 91 (10): 3593–600. doi: 10.1182/blood.V91.10.3593 . PMID   9572993.
  6. Moestrup SK, Kozyraki R, Kristiansen M, Kaysen JH, Rasmussen HH, Brault D, Pontillon F, Goda FO, Christensen EI, Hammond TG, Verroust PJ (Mar 1998). "The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins". J Biol Chem. 273 (9): 5235–42. doi: 10.1074/jbc.273.9.5235 . PMID   9478979.
  7. 1 2 "Entrez Gene: CUBN cubilin (intrinsic factor-cobalamin receptor)".
  8. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E (2015-01-23). "Tissue-based map of the human proteome". Science. 347 (6220): 1260419. doi:10.1126/science.1260419. ISSN   0036-8075. PMID   25613900. S2CID   802377.
  9. "Tissue expression of CUBN - Summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2017-09-06.
  10. Gremel G, Djureinovic D, Niinivirta M, Laird A, Ljungqvist O, Johannesson H, Bergman J, Edqvist PH, Navani S (2017-01-04). "A systematic search strategy identifies cubilin as independent prognostic marker for renal cell carcinoma". BMC Cancer. 17 (1): 9. doi: 10.1186/s12885-016-3030-6 . ISSN   1471-2407. PMC   5215231 . PMID   28052770.
  11. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z (2017-08-18). "A pathology atlas of the human cancer transcriptome". Science. 357 (6352): eaan2507. doi: 10.1126/science.aan2507 . ISSN   0036-8075. PMID   28818916.
  12. "Expression of CUBN in renal cancer - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2017-09-06.

Further reading