Dicyanoacetylene

Last updated
Dicyanoacetylene
Dicyanoacetylene Structural Formula V2.svg
Carbon-subnitride-3D-balls.png
Carbon-subnitride-3D-vdW.png
Names
Preferred IUPAC name
But-2-ynedinitrile
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C4N2/c5-3-1-2-4-6 X mark.svgN
    Key: ZEHZNAXXOOYTJM-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C4N2/c5-3-1-2-4-6
    Key: ZEHZNAXXOOYTJM-UHFFFAOYAR
  • N#CC#CC#N
Properties
C4N2
Molar mass 76.058 g·mol−1
Density 0.907 g/cm3
Melting point 20.5 °C (68.9 °F; 293.6 K)
Boiling point 76.5 °C (169.7 °F; 349.6 K)
Thermochemistry
+500.4 kJ/mol
Related compounds
Related compounds
Carbon suboxide
Cyanogen
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dicyanoacetylene, also called carbon subnitride or but-2-ynedinitrile (IUPAC), is a compound of carbon and nitrogen with chemical formula C4N2. It has a linear molecular structure, N≡C−C≡C−C≡N (often abbreviated as NC4N), with alternating triple and single covalent bonds. It can be viewed as acetylene with the two hydrogen atoms replaced by cyanide groups.

Contents

At room temperature, dicyanoacetylene is a clear liquid. Because of its high endothermic heat of formation, it can explode to carbon powder and nitrogen gas, and it burns in oxygen with a bright blue-white flame at a temperature of 5,260 K (4,990 °C; 9,010 °F), the hottest flame in oxygen; burned in ozone at high pressure the flame temperature exceeds 6,000 K (5,730 °C; 10,340 °F). [1]

Synthesis

Dicyanoacetylene can be prepared by passing nitrogen gas over a sample of graphite heated to temperatures between 2673 and 3000 K. [2] It may also be synthesized via a reaction between a dihaloacetylene and a cyanide salt:[ citation needed ]

As a reagent in organic chemistry

Dicyanoacetylene is a powerful dienophile because the cyanide groups are electron-withdrawing, so it is a useful reagent for Diels-Alder reactions with unreactive dienes. It even adds to the aromatic compound durene (1,2,4,5-tetramethylbenzene) to form a substituted bicyclooctatriene. [3] Only the most reactive of dienophiles can attack such aromatic compounds.

In outer space

Solid dicyanoacetylene has been detected in the atmosphere of Titan by infrared spectroscopy. [4] As the seasons change on Titan, the compound condenses and evaporates in a cycle, which allows scientists on Earth to study Titanian meteorology.

As of 2006, the detection of dicyanoacetylene in the interstellar medium has been impossible, because its symmetry means it has no rotational microwave spectrum. However, similar asymmetric molecules like cyanoacetylene have been observed, and its presence in those environments is therefore suspected. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Amine</span> Chemical compounds and groups containing nitrogen with a lone pair (:N)

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

Cyanogen is the chemical compound with the formula (CN)2. The simplest stable carbon nitride, it is a colorless and highly toxic gas with a pungent odor. The molecule is a pseudohalogen. Cyanogen molecules consist of two CN groups – analogous to diatomic halogen molecules, such as Cl2, but far less oxidizing. The two cyano groups are bonded together at their carbon atoms: N≡C‒C≡N, although other isomers have been detected. The name is also used for the CN radical, and hence is used for compounds such as cyanogen bromide (NCBr) (but see also Cyano radical.)

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Nitro compound</span> Organic compound containing an −NO₂ group

In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

<span class="mw-page-title-main">Cyanate</span> Anion with formula OCN and charge –1

The cyanate ion is an anion with the chemical formula OCN. It is a resonance of three forms: [O−C≡N] (61%) ↔ [O=C=N] (30%) ↔ [O+≡C−N2−] (4%).

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

In organic chemistry, Madelung synthesis is a chemical reaction that produces indoles by the intramolecular cyclization of N-phenylamides using strong base at high temperature. The Madelung synthesis was reported in 1912 by Walter Madelung, when he observed that 2-phenylindole was synthesized using N-benzoyl-o-toluidine and two equivalents of sodium ethoxide in a heated, airless reaction. Common reaction conditions include use of sodium or potassium alkoxide as base in hexane or tetrahydrofuran solvents, at temperatures ranging between 200–400 °C. A hydrolysis step is also required in the synthesis. The Madelung synthesis is important because it is one of few known reactions that produce indoles from a base-catalyzed thermal cyclization of N-acyl-o-toluidines.

<span class="mw-page-title-main">Fullerene chemistry</span>

Fullerene chemistry is a field of organic chemistry devoted to the chemical properties of fullerenes. Research in this field is driven by the need to functionalize fullerenes and tune their properties. For example, fullerene is notoriously insoluble and adding a suitable group can enhance solubility. By adding a polymerizable group, a fullerene polymer can be obtained. Functionalized fullerenes are divided into two classes: exohedral fullerenes with substituents outside the cage and endohedral fullerenes with trapped molecules inside the cage.

<span class="mw-page-title-main">Triethylaluminium</span> Chemical compound

Triethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name the compound has the formula Al2(C2H5)6 (abbreviated as Al2Et6 or TEA). This colorless liquid is pyrophoric. It is an industrially important compound, closely related to trimethylaluminium.

A carbon–nitrogen bond is a covalent bond between carbon and nitrogen and is one of the most abundant bonds in organic chemistry and biochemistry.

The retro-Diels–Alder reaction is the reverse of the Diels–Alder (DA) reaction, a [4+2] cycloelimination. It involves the formation of a diene and dienophile from a cyclohexene. It can be accomplished spontaneously with heat, or with acid or base mediation.

<span class="mw-page-title-main">Cyanogen fluoride</span> Chemical compound

Cyanogen fluoride is an inorganic linear compound which consists of a fluorine in a single bond with carbon, and a nitrogen in a triple bond with carbon. It is a toxic and explosive gas at room temperature. It is used in organic synthesis and can be produced by pyrolysis of cyanuric fluoride or by fluorination of cyanogen.

In Lewis acid catalysis of organic reactions, a metal-based Lewis acid acts as an electron pair acceptor to increase the reactivity of a substrate. Common Lewis acid catalysts are based on main group metals such as aluminum, boron, silicon, and tin, as well as many early and late d-block metals. The metal atom forms an adduct with a lone-pair bearing electronegative atom in the substrate, such as oxygen, nitrogen, sulfur, and halogens. The complexation has partial charge-transfer character and makes the lone-pair donor effectively more electronegative, activating the substrate toward nucleophilic attack, heterolytic bond cleavage, or cycloaddition with 1,3-dienes and 1,3-dipoles.

<span class="mw-page-title-main">1,3-Diphenylisobenzofuran</span> Chemical compound

1,3-Diphenylisobenzofuran is a highly reactive diene that can scavenge unstable and short-lived dienophiles in a Diels-Alder reaction. It is furthermore used as a standard reagent for the determination of singlet oxygen, even in biological systems. Cycloadditions with 1,3-diphenylisobenzofuran and subsequent oxygen cleavage provide access to a variety of polyaromatics.

<span class="mw-page-title-main">Boraacenes</span> Boron containing acene compounds

Boraacenes are polycyclic aromatic hydrocarbons containing at least one boron atom. Structurally, they are related to acenes, linearly fused benzene rings. However, the boron atom is electron deficient and may act as a Lewis Acid when compared to carbon. This results in slightly less negative charge within the ring, smaller HOMO-LUMO gaps, as well as differences in redox chemistry when compared to their acene analogues. When incorporated into acenes, Boron maintains the planarity and aromaticity of carbon acenes, while adding an empty p-orbital, which can be utilized for the fine tuning of organic semiconductor band gaps. Due to this empty p orbital, however, it is also highly reactive when exposed to nucleophiles like water or normal atmosphere, as it will readily be attacked by oxygen, which must be addressed to maintain its stability.

References

  1. Kirshenbaum, A. D.; Grosse, A. V. (1956). "The Combustion of Carbon Subnitride, C4N2, and a Chemical Method for the Production of Continuous Temperatures in the Range of 5000–6000K". Journal of the American Chemical Society. 78 (9): 2020. doi:10.1021/ja01590a075.
  2. Ciganek, E.; Krespan, C. G. (1968). "Syntheses of Dicyanoacetylene". The Journal of Organic Chemistry. 33 (2): 541–544. doi:10.1021/jo01266a014.
  3. Weis, C. D. (1963). "Reactions of Dicyanoacetylene". Journal of Organic Chemistry. 28 (1): 74–78. doi:10.1021/jo01036a015.
  4. Samuelson, R. E.; Mayo, L. A.; Knuckles, M. A.; Khanna, R. J. (1997). "C4N2 Ice in Titan's North Polar Stratosphere". Planetary and Space Science. 45 (8): 941–948. Bibcode:1997P&SS...45..941S. doi:10.1016/S0032-0633(97)00088-3.
  5. Kołos, R. (2002). "Exotic Isomers of Dicyanoacetylene: A Density Functional Theory and ab initio Study". Journal of Chemical Physics. 117 (5): 2063–2067. Bibcode:2002JChPh.117.2063K. doi:10.1063/1.1489992.