Discrete symmetry

Last updated

In mathematics and geometry, a discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance. Discrete symmetries sometimes involve some type of 'swapping', these swaps usually being called reflections or interchanges. In mathematics and theoretical physics, a discrete symmetry is a symmetry under the transformations of a discrete group—e.g. a topological group with a discrete topology whose elements form a finite or a countable set.

One of the most prominent discrete symmetries in physics is parity symmetry. It manifests itself in various elementary physical quantum systems, such as quantum harmonic oscillator, electron orbitals of Hydrogen-like atoms by forcing wavefunctions to be even or odd. This in turn gives rise to selection rules that determine which transition lines are visible in atomic absorption spectra.

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Symmetry</span> Mathematical invariance under transformations

Symmetry in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations, such as translation, reflection, rotation, or scaling. Although these two meanings of the word can sometimes be told apart, they are intricately related, and hence are discussed together in this article.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.

<span class="mw-page-title-main">Spontaneous symmetry breaking</span> Symmetry breaking through the vacuum state

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was proposed by Konrad Zuse in his 1969 book Rechnender Raum ("Calculating-space"). The term digital physics was coined in 1978 by Edward Fredkin, who later came to prefer the term digital philosophy. Fredkin encouraged the creation of a digital physics group at what was then MIT's Laboratory for Computer Science, with Tommaso Toffoli and Norman Margolus as primary figures.

<span class="mw-page-title-main">Translational symmetry</span> Invariance of operations under geometric translation

In physics and mathematics, continuous translational symmetry is the invariance of a system of equations under any translation. Discrete translational symmetry is invariant under discrete translation.

<span class="mw-page-title-main">Symmetry breaking</span> Physical process transitioning a system from a symmetric state to a more ordered state

In physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics. Specifically, it plays a central role in the Glashow–Weinberg–Salam model which forms part of the Standard model modelling the electroweak sector.

In physics, a parity transformation is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates :

Alexander Grossmann was a French-American physicist of Croatian origin.

In quantum field theory, multiplicative quantum numbers are conserved quantum numbers of a special kind. A given quantum number q is said to be additive if in a particle reaction the sum of the q-values of the interacting particles is the same before and after the reaction. Most conserved quantum numbers are additive in this sense; the electric charge is one example. A multiplicative quantum number q is one for which the corresponding product, rather than the sum, is preserved.

<span class="mw-page-title-main">Symmetry (physics)</span> Feature of a system that is preserved under some transformation

In physics, a symmetry of a physical system is a physical or mathematical feature of the system that is preserved or remains unchanged under some transformation.

<span class="mw-page-title-main">Particle physics and representation theory</span> Physics-mathematics connection

There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.

In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2-dimensional object in 3-dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.

<span class="mw-page-title-main">Gauge theory</span> Physical theory with fields invariant under the action of local "gauge" Lie groups

In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant.

<span class="mw-page-title-main">Time crystal</span> Structure that repeats in time; a novel type or phase of non-equilibrium matter

In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum ground state. Time crystals were first proposed theoretically by Frank Wilczek in 2012 as a time-based analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In terms of practical use, time crystals may one day be used as quantum computer memory.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

<span class="mw-page-title-main">Time-translation symmetry</span> Hypothesis that physics experiments will behave the same regardless of when they are conducted

Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group.

Phase space crystal is the state of a physical system that displays discrete symmetry in phase space instead of real space. For a single-particle system, the phase space crystal state refers to the eigenstate of the Hamiltonian for a closed quantum system or the eigenoperator of the Liouvillian for an open quantum system. For a many-body system, phase space crystal is the solid-like crystalline state in phase space. The general framework of phase space crystals is to extend the study of solid state physics and condensed matter physics into phase space of dynamical systems. While real space has Euclidean geometry, phase space is embedded with classical symplectic geometry or quantum noncommutative geometry.

References