Dungey Cycle

Last updated
Schematic of the Dungey cycle flow mapped into the ionosphere Schematic of the Dungey cycle.png
Schematic of the Dungey cycle flow mapped into the ionosphere

The Dungey cycle, officially proposed by James Dungey in 1961, [1] is a phenomenon that explains interactions between a planet's magnetosphere and solar wind. [2] Dungey originally proposed a cyclic behavior of magnetic reconnection between Earth's magnetosphere and flux of solar wind. This reconnection explained previously observed dynamics within Earth's magnetosphere. [3] The rate of reconnection in the beginning of the cycle is dependent on the orientation of the interplanetary magnetic field [4] as well as the resultant plasma conditions at the site of reconnection. On Earth, the reconnection cycle takes around 1 hour, but this differs from planet to planet.

Contents

Cyclic Behavior

The Dungey cycle occurs within three stages:

  1. In the first stage, solar flux and the magnetopause connect, creating an opening in the magnetopause in which the solar wind can enter the magnetosphere. [4] This opening is called the dayside reconnection and occurs on the side of the magnetosphere facing the solar wind source.
  2. In the second stage, the flux travels in the direction of the solar wind across the magnetosphere.
  3. In the third stage, at the magnetotail, reconnection closes the open flux, allowing for a new cycle to begin. This reconnection is called nightside reconnection.

Dungey's proposal originally put forth an explanation that the cycle is at steady state, and that the reconnection during stage one and three are equal. However, later work has found that the rate of reconnection is variable and affected by conditions at both the dayside reconnection site as well as the magnetotail. [3]

Effect of interplanetary magnetic field orientation

The rate of reconnection at the magnetopause is heavily dependent on the orientation of the interplanetary magnetic field. Reconnection at the magnetopause occurs at higher rates when there is a stronger southward component to the field. [3] This allows for solar wind with arbitrarily small shear angles to reconnect at the magnetopause. Under normal circumstances, the difference in field strength between the magnetopause and the surrounding fields only allow for solar winds with large shear angles to reconnect. A strong southward component normalizes the difference in field strength between the magnetopause and surrounding fields. [4]

Related Research Articles

<span class="mw-page-title-main">Magnetopause</span> Abrupt boundary between a magnetosphere and the surrounding plasma

The magnetopause is the abrupt boundary between a magnetosphere and the surrounding plasma. For planetary science, the magnetopause is the boundary between the planet's magnetic field and the solar wind. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to Kelvin–Helmholtz instability.

<span class="mw-page-title-main">Magnetosphere</span> Region around an astronomical object in which its magnetic field affects charged particles

In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynamo.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Magnetic sail</span> Proposed spacecraft propulsion method

A magnetic sail is a proposed method of spacecraft propulsion where a spacecraft shown as a purple dot in the center of the illustration has a source that generates a magnetic field, which under certain conditions, summarized in the overview section, creates a magnetopause and a bow shock that deflect a plasma wind of charged particles. A low density region forms creating an artificial magnetospheric bubble around the spacecraft. The term magnetospheric object refers to the magnetosphere, magnetopause and the bow shock. Charged particles in the plasma deflected by the bow shock and magnetopause together create an effective sail blocking area that exerts a wind force that acts on the magnetic field, which in turn exerts a magnetic force on the field source that creates a spacecraft force that accelerates the spacecraft in the same direction as the plasma wind.

<span class="mw-page-title-main">Aurora</span> Natural luminous atmospheric effect observed chiefly at high latitudes

An aurora , also commonly known as the northern lights or southern lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions. Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

<span class="mw-page-title-main">Magnetosheath</span> Region of a magnetosphere which cannot fully deflect charged particles

The magnetosheath is the region of space between the magnetopause and the bow shock of a planet's magnetosphere. The regularly organized magnetic field generated by the planet becomes weak and irregular in the magnetosheath due to interaction with the incoming solar wind, and is incapable of fully deflecting the highly charged particles. The density of the particles in this region is considerably lower than what is found beyond the bow shock, but greater than within the magnetopause, and can be considered a transitory state.

<span class="mw-page-title-main">Magnetosphere of Saturn</span> Cavity in the solar wind the sixth planet creates

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it.

<span class="mw-page-title-main">Cluster II (spacecraft)</span> European Space Agency mission

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of nearly two solar cycles. The mission is composed of four identical spacecraft flying in a tetrahedral formation. As a replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur, Kazakhstan. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space. In February 2021, Cluster II celebrated 20 years of successful scientific operations in space. As of March 2023, its mission has been extended until September 2024. The China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2004 to 2007.

The following is a chronology of discoveries concerning the magnetosphere.

<span class="mw-page-title-main">Geotail</span>

Geotail was a satellite that observed the Earth's magnetosphere. It was developed by Japan's ISAS in association with the United States' NASA, and was launched by a Delta II rocket on 24 July 1992 from Cape Canaveral Air Force Station.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

<span class="mw-page-title-main">Magnetic field of the Moon</span>

The magnetic field of the Moon is very weak in comparison to that of the Earth; the major difference is the Moon does not have a dipolar magnetic field currently, so that the magnetization present is varied and its origin is almost entirely crustal in location; so it's difficult to compare as a percentage to Earth. But, one experiment discovered that lunar rocks formed 1 - 2.5 billion years ago were created in a field of about 5 microtesla (μT), compared to present day Earth's 50 μT. During the Apollo program several magnetic field strength readings were taken with readings ranging from a low of 6γ (6nT) at the Apollo 15 site to a maximum of 313γ (0.31μT) at the Apollo 16 site, note these readings were recorded in gammas(γ) a now outdated unit of magnetic flux density equivalent to 1nT.

<span class="mw-page-title-main">Magnetospheric Multiscale Mission</span> Four NASA robots studying Earths magnetosphere (2015-present)

The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence⁠ — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft have enough fuel to remain operational until 2040.

<span class="mw-page-title-main">SMILE (spacecraft)</span> Chinese–European satellite studying Earths magnetosphere

Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a planned joint venture mission between the European Space Agency and the Chinese Academy of Sciences. SMILE will image for the first time the magnetosphere of the Sun in soft X-rays and UV during up to 40 hours per orbit, improving our understanding of the dynamic interaction between the solar wind and Earth's magnetosphere. The prime science questions of the SMILE mission are

David Breed Beard was a space physicist, known for "pioneering work on the shapes and structures of planetary magnetospheres, Jovian radio emissions, and comets."

The Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM) was one of five mission proposals selected to proceed to Phase A concept studies as part of the 2019 NASA Heliophysics Medium Class Explorer Announcement of Opportunity. STORM will provide the first-ever global view of the Sun-Earth system. STORM takes simultaneous observations of the solar wind and the response of Earth’s magnetosphere, including the magnetopause, auroral oval, and ring current dynamics, using global multi-spectral and neutral atom imaging to quantify the global circulation of the energy that powers space weather.

<span class="mw-page-title-main">Space hurricane</span> Solar windstorm

A space hurricane is a huge, funnel-like, spiral geomagnetic storm that occurs above the polar Ionosphere of Earth, during extremely quiet conditions. They are related to the aurora borealis phenomenon, as the electron precipitation from the storm's funnel produces gigantic, cyclone-shaped auroras. Scientists believe that they occur in the polar regions of planets with magnetic fields.

<span class="mw-page-title-main">James Dungey</span> British space scientist

James Wynne "Jim" Dungey (1923–2015) was a British space scientist who was pivotal in establishing the field of space weather and made significant contributions to the fundamental understanding of plasma physics.

References

  1. Dungey, J. W. (1961). "Interplanetary Magnetic Field and the Auroral Zones". Physical Review Letters. 6 (2): 47–48. Bibcode:1961PhRvL...6...47D. doi:10.1103/physrevlett.6.47. ISSN   0031-9007.
  2. Cowley FRS, Stanley W. H. (2015), "Dungey's Reconnection Model of the Earth's Magnetosphere: The First 40 Years", Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research, Astrophysics and Space Science Proceedings, Cham: Springer International Publishing, vol. 41, pp. 1–32, doi:10.1007/978-3-319-18359-6_1, ISBN   978-3-319-18358-9
  3. 1 2 3 Milan, S. E.; Provan, G.; Hubert, B. (2007). "Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates". Journal of Geophysical Research: Space Physics. 112 (A1): n/a. Bibcode:2007JGRA..112.1209M. doi:10.1029/2006JA011642. hdl: 2027.42/140049 . ISSN   2156-2202.
  4. 1 2 3 Seki, K.; Nagy, A.; Jackman, C. M.; Crary, F.; Fontaine, D.; Zarka, P.; Wurz, P.; Milillo, A.; Slavin, J. A.; Delcourt, D. C.; Wiltberger, M. (2015). "A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres". Space Science Reviews. 192 (1–4): 27–89. Bibcode:2015SSRv..192...27S. doi:10.1007/s11214-015-0170-y. ISSN   0038-6308. S2CID   118335073.