Eco-industrial development

Last updated

Eco-industrial development (EID) is a framework for industry to develop while reducing its impact on the environment. [1] It uses a closed loop production cycle [2] to tackle a broad set of environmental challenges such as soil and water pollution, desertification, species preservation, energy management, by-product synergy, resource efficiency, air quality, etc. [3]

Contents

Mutually beneficial connections among industry, natural systems, energy, material and local communities become central factors in designing industrial production processes. [4]

The approach itself is largely voluntary and market-driven but often pressed ahead by favorable government treatment or efforts of development co-operation. [5]

History

Since the early 1990s the idea of EID evolved from biological symbiosis. This concept was adopted by industrial ecologists in the search for innovative approaches to solve problems of waste, energy shortage and degradation of the environment. A continuous approach towards improving both environmental and economic outcomes is used. [6]

In 1992, the international community officially connected development co-operation to sustainable environmental protection for the first time. At the United Nations Conference on Environment and Development (UNCED) in Rio de Janeiro, Brazil nearly 180 states signed the conference's Rio Declaration. Although non-binding, the Rio Declaration on Environment and Development laid out 27 principles that shall guide the increasing inter-connectedness of development cooperation and sustainability. [7] Moreover, the documents drafting was accompanied by a presentation describing the idea of eco-industrial development for the first time.[ citation needed ]

In the following years, EID became popular throughout the United States. The recently elected Clinton administration installed a summit of business, labor, government and environmental protection representatives to further develop the approach. This summit established the idea of eco-industrial parks but soon realized that at first a more efficient management of raw materials, energy and waste has to be achieved.[ citation needed ]

Since then, the broad goals and application principles of EID have hardly changed and only became adapted to the rapid technological progress. [8]

In 2012 the IGEP Foundation, for the promotion of trade, [9] published a report called Pathway to Eco Industrial Development in India – Concepts and Cases. [10]

The field is researched by the Nation Centre for Eco-Industrial Development, a joint project by the University of Southern California and Cornell University. [11]

Goals and concepts

The primary goal of eco-industrial development is a significant and continuous improvement in both business and environmental performance. Herein, the notion of industry not only relates to private-sector manufacturing but also covers state-owned enterprises, the service sector as well as transportation. EID's twin guideline is reflected specifically in the "eco" of eco-industrial as it resembles ecology (decrease in pollution and waste) and economy (increase in commercial success) at the same time. [3] In order to build a framework of defining an enterprise's sustainable performance at the micro level, resource use optimization, minimization of waste, cleaner technologies and pollution limits are used in achieving a broad range of goals in EID:

Eco-industrial development hence explores the possibility of improvement at the local level. [3] In unique case-to-case analyses, particular geography, human potential or business climate are investigated. In contrast to the widespread race for top-down governmental support such as tax cuts, EID emphasizes locally achievable success and room for improvement. As a result, purposeful enforcement of action plans can make a large difference by optimizing the interaction of business, community and ecological systems.[ citation needed ]

Instruments

Eco-industrial development includes and employs four major conceptual instruments. Each of the approaches intends to combine the seemingly antithetic processes of industrial development and bolstering sustainability.

  1. Industrial ecology focuses on both industrial as well as consumer behavior. By assessing flows of energy and material, the approach determines the flows influences on the environment. In turn, it explores ways and means of optimizing the whole production chain from flow and use of resources to their final transformation. During these analyses, influences of economic, political, regulatory and social factors are key.
  2. The concept of industrial symbiosis is based on mainly voluntary cooperation of different industries. By conglomerating complementary enterprises and by then adapting their respective production chains, the presence of each may increase viability and profitability of the others. Therefore, symbioses consider resource scarcity and environmental protection as crucial factors in developing sustainable industries and profits. Industrial Symbiosis often becomes manifest in Eco-industrial parks.
  3. Environmental management systems include a wide range of different environmental management approaches in order to ensure continual improvement in sustainability. In early stages, monitoring companies facilitates the identification of hazardous environmental aspects. Further on, objectives and targets are set under consideration of legal requirements. Finally, the establishment of regular audits and other reporting systems combined with continuous follow-up targets shall ensure a constant improvement towards greener industrial production.
  4. The Design for the Environment concept originated in engineering disciplines as well as from the product life-cycle analysis. It is a simple but all-encompassing assessment of a product's potential environmental impact—ranging from energy and materials used for packaging, transportation, consumer use and disposal.

See also

Related Research Articles

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into by-products, products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Ecological modernization is a school of thought that argues that both the state and the market can work together to protect the environment. It has gained increasing attention among scholars and policymakers in the last several decades internationally. It is an analytical approach as well as a policy strategy and environmental discourse.

<span class="mw-page-title-main">Eco-industrial park</span>

An eco-industrial park (EIP) is an industrial park in which businesses cooperate with each other and with the local community in an attempt to reduce waste and pollution, efficiently share resources, and help achieve sustainable development, with the intention of increasing economic gains and improving environmental quality. An EIP may also be planned, designed, and built in such a way that it makes it easier for businesses to co-operate, and that results in a more financially sound, environmentally friendly project for the developer.

Eco-efficiency refers to the delivery of goods and services to meet human needs and improve quality of life while progressively reducing their environmental impacts of goods and resource intensity during their life-cycle.

<span class="mw-page-title-main">Green building</span> Structures and processes of building structures that are more environmentally responsible

Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. Green building also refers to saving resources to the maximum extent, including energy saving, land saving, water saving, material saving, etc., during the whole life cycle of the building, protecting the environment and reducing pollution, providing people with healthy, comfortable and efficient use of space, and being in harmony with nature. Buildings that live in harmony; green building technology focuses on low consumption, high efficiency, economy, environmental protection, integration and optimization.’

<span class="mw-page-title-main">Waste hierarchy</span> Tool to evaluate processes protecting the environment

Waste hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.

<span class="mw-page-title-main">Ministry of Environment (South Korea)</span>

The Ministry of Environment is the South Korea branch of government charged with environmental protection. In addition to enforcing regulations and sponsoring ecological research, the Ministry manages the national parks of South Korea. Its headquarters is in Sejong City.

Cleaner production is a preventive, company-specific environmental protection initiative. It is intended to minimize waste and emissions and maximize product output. By analysing the flow of materials and energy in a company, one tries to identify options to minimize waste and emissions out of industrial processes through source reduction strategies. Improvements of organisation and technology help to reduce or suggest better choices in use of materials and energy, and to avoid waste, waste water generation, and gaseous emissions, and also waste heat and noise.

Design for the environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. Different software tools have been developed to assist designers in finding optimized products or processes/services. DfE is also the original name of a United States Environmental Protection Agency (EPA) program, created in 1992, that works to prevent pollution, and the risk pollution presents to humans and the environment. The program provides information regarding safer chemical formulations for cleaning and other products. EPA renamed its program "Safer Choice" in 2015.

<span class="mw-page-title-main">Industrial symbiosis</span>

Industrial symbiosis a subset of industrial ecology. It describes how a network of diverse organizations can foster eco-innovation and long-term culture change, create and share mutually profitable transactions—and improve business and technical processes.

<span class="mw-page-title-main">Ecological design</span> Design approach sensitive to environmental impacts

Ecological design or ecodesign is an approach to designing products and services that gives special consideration to the environmental impacts of a product over its entire lifecycle. Sim Van der Ryn and Stuart Cowan define it as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." Ecological design can also be defined as the process of integrating environmental considerations into design and development with the aim of reducing environmental impacts of products through their life cycle.

This page is an index of sustainability articles.

Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance. The basic objectives of sustainability are to reduce the consumption of non-renewable resources, minimize waste, and create healthy, productive environments.

A sustainability organization is (1) an organized group of people that aims to advance sustainability and/or (2) those actions of organizing something sustainably. Unlike many business organizations, sustainability organizations are not limited to implementing sustainability strategies which provide them with economic and cultural benefits attained through environmental responsibility. For sustainability organizations, sustainability can also be an end in itself without further justifications.

<span class="mw-page-title-main">Circular economy</span> Production model to minimise wastage and emissions

A circular economy is a model of resource production and consumption in any economy that involves sharing, leasing, reusing, repairing, refurbishing, and recycling existing materials and products for as long as possible. The concept aims to tackle global challenges such as climate change, biodiversity loss, waste, and pollution by emphasizing the design-based implementation of the three base principles of the model. The three principles required for the transformation to a circular economy are: designing out waste and pollution; keeping products and materials in use, and regenerating natural systems." CE is defined in contradistinction to the traditional linear economy. The idea and concepts of a circular economy have been studied extensively in academia, business, and government over the past ten years. It has been gaining popularity because it can help to minimize carbon emissions and the consumption of raw materials, open up new market prospects, and, principally, increase the sustainability of consumption.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

<span class="mw-page-title-main">Sustainable urbanism</span> Study of cities and the practices to build them

Sustainable urbanism is both the study of cities and the practices to build them (urbanism), that focuses on promoting their long term viability by reducing consumption, waste and harmful impacts on people and place while enhancing the overall well-being of both people and place. Well-being includes the physical, ecological, economic, social, health and equity factors, among others, that comprise cities and their populations. In the context of contemporary urbanism, the term cities refers to several scales of human settlements from towns to cities, metropolises and mega-city regions that includes their peripheries / suburbs / exurbs. Sustainability is a key component to professional practice in urban planning and urban design along with its related disciplines landscape architecture, architecture, and civil and environmental engineering. Green urbanism and ecological urbanism are other common terms that are similar to sustainable urbanism, however they can be construed as focusing more on the natural environment and ecosystems and less on economic and social aspects. Also related to sustainable urbanism are the practices of land development called Sustainable development, which is the process of physically constructing sustainable buildings, as well as the practices of urban planning called smart growth or growth management, which denote the processes of planning, designing, and building urban settlements that are more sustainable than if they were not planned according to sustainability criteria and principles.

<span class="mw-page-title-main">Resource efficiency</span>

Resource efficiency is the maximising of the supply of money, materials, staff, and other assets that can be drawn on by a person or organization in order to function effectively, with minimum wasted (natural) resource expenses. It means using the Earth's limited resources in a sustainable manner while minimising environmental impact.

A circular economy is an alternative way countries manage their resources, where instead of using products in the traditional linear make, use, dispose method, resources are used for their maximum utility throughout its life cycle and regenerated in a cyclical pattern minimizing waste. They strive to create economic development through environmental and resource protection. The ideas of a circular economy were officially adopted by China in 2002, when the 16th National Congress of the Chinese Communist Party legislated it as a national endeavour, though various sustainability initiatives were implemented in the previous decades starting in 1973. China adopted the circular economy due to the environmental damage and resource depletion that was occurring from going through its industrialization process. China is currently a world leader in the production of resources, where it produces 46% of the worlds aluminum, 50% of steel and 60% of cement, while it has consumed more raw materials than all the countries a part of the Organisation for Economic Co-operation and Development (OECD) combined. In 2014, China created 3.2 billion tonnes of industrial solid waste, where 2 billion tonnes were recovered using recycling, incineration, reusing and composting. By 2025, China is anticipated to produce up to one quarter of the worlds municipal solid waste.

Precise definitions of sustainable construction vary from place to place, and are constantly evolving to encompass varying approaches and priorities. In the United States, the Environmental Protection Agency (EPA) defines sustainable construction as "the practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout a building's life-cycle from siting to design, construction, operation, maintenance, renovation and deconstruction." The Netherlands defines sustainable construction as "a way of building which aims at reducing (negative) health and environmental impacts caused by the construction process or by buildings or by the built-up environment." More comprehensively, sustainability can be considered from three dimension of planet, people and profit across the entire construction supply chain. Key concepts include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and the use of life-cycle cost analysis.

References

  1. Cohen-Rosenthal, E (2003). "What is Eco-Industrial Development?" (PDF). Greenleaf Publishing. p. 7. Retrieved 23 April 2014.
  2. "Eco-industrial development and the Resource Conservation and Recovery Act: examining the barrier presumption". Boston College. Retrieved 23 April 2014.
  3. 1 2 3 Cohen-Rosenthal, E (2003). "What is Eco-Industrial Development?" (PDF). Greenleaf Publishing. Retrieved 23 April 2014.
  4. Cohen-Rosenthal, E (1999). "Handbook on Codes, Covenants, Conditions, and Restrictions for Eco-Industrial Parks". Cornell Center for the Environment. Archived from the original on December 25, 2001. Retrieved 23 April 2014.
  5. Brinkmann, Svend (2012). Qualitative Inquiry in Everyday Life: Working with Everyday Life Materials. London: SAGE Publications Ltd. doi:10.4135/9781473913905. ISBN   9780857024763. S2CID   147934729.
  6. Chung, B. (2007): The Limit and Merit of Taking Sustainable Buildings as a Catalyst for Eco-Industrial Development.
  7. "REPORT OF THE UNITED NATIONS CONFERENCE ON ENVIRONMENT AND DEVELOPMENT". United nations. 1992. Retrieved 23 April 2014.
  8. Deruty, Emmanuel; Tardieu, Damien (2014-02-03). "About Dynamic Processing in Mainstream Music". Journal of the Audio Engineering Society. 62 (1/2): 42–55. doi:10.17743/jaes.2014.0001. ISSN   1549-4950.
  9. "IGEP Foundation homepage". IGEP Foundation. Retrieved 23 April 2014.
  10. 1 2 "Pathway to Eco Industrial Development in India – Concepts and Cases" (PDF). IGEP Foundation. 2012. Archived from the original (PDF) on 9 September 2016. Retrieved 23 April 2014.
  11. "National Center for Eco-Industrial Development". usc.edu. Archived from the original on 24 June 2013. Retrieved 29 January 2014.