Enterotype

Last updated

An enterotype is a classification of living organisms based on the bacteriological composition of their gut microbiota. The discovery of three human enterotypes was announced in the April 2011 issue of Nature by Peer Bork and his associates. [1] They found that enterotypes are not dictated by age, gender, body weight, or national divisions. [2] There are indications that long-term diet influences enterotype. [3] Type 1 is characterized by high levels of Bacteroides , type 2 has few Bacteroides but Prevotella are common, and type 3 has high levels of Ruminococcus . [1] [4] [5]

The value of classifying by enterotype has been challenged. [6] [7]

In a study of gut bacteria of children in Burkina Faso (in Africa), Prevotella made up 53% of the gut bacteria, but were absent in age-matched European children. [8]

Studies also indicate that long-term diet is strongly associated with the gut microbiome composition—those who eat plenty of protein and animal fats typical of Western diet have predominantly Bacteroides bacteria, while for those who consume more carbohydrates, especially fibre, the Prevotella species dominate. [9]

Chimpanzees have enterotypes that are compositionally analogous to those found in humans. Using longitudinal samples, researchers found that the enterotype of individual chimpanzees varied over time. [10]

Related Research Articles

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, biliary tract, and gastrointestinal tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<span class="mw-page-title-main">Gut microbiota</span> Community of microorganisms in the gut

Gut microbiota, gut microbiome, or gut flora, are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

<span class="mw-page-title-main">Enteric fermentation</span> Digestive process that emits methane

Enteric fermentation is a digestive process by which carbohydrates are broken down by microorganisms into simple molecules for absorption into the bloodstream of an animal. Because of human agricultural reliance in many parts of the world on animals which digest by enteric fermentation, it is the second largest anthropogenic factor for the increase in methane emissions directly after fossil fuel use.

<i>Bacteroides</i> Genus of bacteria

Bacteroides is a genus of Gram-negative, obligate anaerobic bacteria. Bacteroides species are non endospore-forming bacilli, and may be either motile or nonmotile, depending on the species. The DNA base composition is 40–48% GC. Unusual in bacterial organisms, Bacteroides membranes contain sphingolipids. They also contain meso-diaminopimelic acid in their peptidoglycan layer.

<i>Bacteroides fragilis</i> Species of bacterium

Bacteroides fragilis is an anaerobic, Gram-negative, pleomorphic to rod-shaped bacterium. It is part of the normal microbiota of the human colon and is generally commensal, but can cause infection if displaced into the bloodstream or surrounding tissue following surgery, disease, or trauma.

Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract.

Prevotellaceae is a family of bacteria from the order Bacteroidales. As a member of the phylum Bacteroidota, its species are gram negative – meaning their outer cell wall contains lipopolysaccharides. Since they are anaerobes, members of Prevotellaceae can live in areas where there is little to no oxygen – such as the guts of mammals.

<span class="mw-page-title-main">Microbiota</span> Community of microorganisms

Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.

Prevotella is a genus of Gram-negative bacteria.

<i>Porphyromonas</i> Genus of bacteria

Porphyromonas is a Gram-negative, non-spore-forming, obligately anaerobic and non-motile genus from the family Porphyromonadaceae. There were 16 different Porphyromonas species documented as of 2015, which reside in both animal and human reservoirs. It was discovered more recently that Porphyromonas also exist in the environment, albeit to a lesser extent. This genus is notably implicated in the modulation of oral cavity, respiratory tract, and gastrointestinal tract disease states. It is suggested that Porphyromonas either operate as benign bacteria pertinent to host immunity or are potential pathobionts that opportunistically provoke diseased states when homeostasis is disrupted. Despite its characterization not being fully elucidated due to sparse research, various studies report the prevalence of this genus at 58.7% in healthy states compared with 41.3% in diseased states.

<span class="mw-page-title-main">Gut–brain axis</span> Biochemical signaling between the gastrointestinal tract and the central nervous system

The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract and the central nervous system (CNS). The "microbiota–gut–brain axis" includes the role of gut microbiota in the biochemical signaling events that take place between the GI tract and the CNS. Broadly defined, the gut–brain axis includes the central nervous system, neuroendocrine system, neuroimmune systems, the hypothalamic–pituitary–adrenal axis, sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous system, vagus nerve, and the gut microbiota.

<span class="mw-page-title-main">CrAssphage</span>

CrAss-like phage are a bacteriophage family that was discovered in 2014 by cross assembling reads in human fecal metagenomes. In silico comparative genomics and taxonomic analysis have found that crAss-like phages represent a highly abundant and diverse family of viruses. CrAss-like phage were predicted to infect bacteria of the Bacteroidota phylum and the prediction was later confirmed when the first crAss-like phage (crAss001) was isolated on a Bacteroidota host in 2018. The presence of crAss-like phage in the human gut microbiota is not yet associated with any health condition.

Sarkis Mazmanian is an American medical microbiologist who has served as a professor at the California Institute of Technology since 2006. He is currently the Luis & Nelly Soux Professor of Microbiology in the Division of Biology and Biological Engineering, and a board member of Seed. Prior to this, Mazmanian was affiliated with Harvard Medical School and the University of Chicago. In 2012, Mazmanian was awarded a MacArthur Fellowship for his pioneering work on the human microbiome.

The microbiota are the sum of all symbiotic microorganisms living on or in an organism. The fruit fly Drosophila melanogaster is a model organism and known as one of the most investigated organisms worldwide. The microbiota in flies is less complex than that found in humans. It still has an influence on the fitness of the fly, and it affects different life-history characteristics such as lifespan, resistance against pathogens (immunity) and metabolic processes (digestion). Considering the comprehensive toolkit available for research in Drosophila, analysis of its microbiome could enhance our understanding of similar processes in other types of host-microbiota interactions, including those involving humans. Microbiota plays key roles in the intestinal immune and metabolic responses via their fermentation product, acetate.

Prevotella bivia is a species of bacteria in the genus Prevotella. It is gram-negative. It is one cause of pelvic inflammatory disease.

<span class="mw-page-title-main">Human milk microbiome</span> Community of microorganisms in human milk

The human milk microbiota, also known as human milk probiotics (HMP), refers to the microbiota (community of microorganisms) residing in the human mammary glands and breast milk. Human breast milk has been traditionally assumed to be sterile, but more recently both microbial culture and culture-independent techniques have confirmed that human milk contains diverse communities of bacteria which are distinct from other microbial communities inhabiting the human body.

<i>Bacteroides thetaiotaomicron</i> Species of bacterium

Bacteroides thetaiotaomicron is a gram-negative, rod shaped obligate anaerobic bacterium that is a prominent member of the normal gut microbiome in the distal intestines. Its proteome, consisting of 4,779 members, includes a system for obtaining and breaking down dietary polysaccharides that would otherwise be difficult to digest. B. thetaiotaomicron is also an opportunistic pathogen, meaning it may become virulent in immunocompromised individuals. It is often used in research as a model organism for functional studies of the human microbiota.

<i>Phocaeicola vulgatus</i> Species of bacteria

Phocaeicola vulgatus,, is a mutualistic anaerobic Gram negative rod bacteria commonly found in the human gut microbiome and isolated from feces. P. vulgatus has medical relevance and has been notable in scientific research due to its production of fatty acids, potential use as a probiotic, and associations with protecting against and worsening some inflammatory diseases. Due to the difficulties in culturing anaerobic bacteria, P. vulgatus is still highly uncharacterised so efforts are being made to make use of multi-omic approaches to investigate the human gut microbiome more thoroughly in hopes to fully understand the role of this species in the development of and protection against diseases, as well as its potential uses in medicine and research. Generally, P. vulgatus is considered as a beneficial bacteria that contributes to digestion and a balanced microbiome, but it has been known to cause opportunistic infections and induce or worsen inflammatory responses. Due to its abundance in the microbiome, some researchers are investigating these species in hopes that it will be a suitable model organism for gut microbiome research, like Bacteroides thetaiotaomicron.

The poultry microbiome is an understudied, yet extremely impactful part of the poultry industry. Poultry is defined as any avian species used for production purposes such as food or down feathers.The United States consumes more poultry, specifically broiler meat, than any other type of protein. Worldwide, poultry makes up 33% of consumed meat. This makes poultry extremely valuable and the impact of the poultry microbiome on health and production even more valuable. Antonie van Leeuwenhoek was the first to notice microbes inside animals through stool samples giving light to further research into the gut microbiome. His discovery lead to the ever evolving study of the microbiota and microbiome. The microbiota is the entirety of living organisms including bacteria, viruses, fungi, and archaea in an environment. The microbiome is the combination of the microbiota and the additional activities in that system including metabolites and chemicals in a habitat. Much of the work done to characterize the poultry microbiome has been accomplished over the past decade and was done through the use of 16s rRNA sequencing.

References

  1. 1 2 Zimmer, Carl (20 April 2011). "Bacteria Divide People Into 3 Types, Scientists Say". The New York Times. Retrieved 21 April 2011. a group of scientists now report just three distinct ecosystems in the guts of people they have studied.
  2. Arumugam M, Raes J, et al. (April 2011). "Enterotypes of the human gut microbiome". Nature. 473 (7346): 174–80. Bibcode:2011Natur.473..174.. doi:10.1038/nature09944. PMC   3728647 . PMID   21508958. Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific.
  3. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, et al. (2011). "Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes". Science. 334 (6052): 105–108. Bibcode:2011Sci...334..105W. doi:10.1126/science.1208344. PMC   3368382 . PMID   21885731.
  4. Keim, Brandon (20 April 2011). "Gut-Bacteria Mapping Finds Three Global Varieties". Wired Magazine. Retrieved 21 April 2011.
  5. Coghlan, Andy (20 April 2011). "Each human has one of only three gut ecosystems". New Scientist. Retrieved 21 April 2011.
  6. Knights, Dan; Ward, Tonya; McKinlay, Christopher; Miller, Hannah; Gonzalez, Antonio; McDonald, Daniel; Knight, Rob (8 October 2014). "Rethinking "Enterotypes"". Cell Host & Microbe. 16 (4): 433–437. doi:10.1016/j.chom.2014.09.013. PMC   5558460 . PMID   25299329.
  7. Gorvitovskaia, Anastassia; Holmes, Susan P.; Huse, Susan M. (12 April 2016). "Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle". Microbiome. 15 (4): 15. doi: 10.1186/s40168-016-0160-7 . PMC   4828855 . PMID   27068581.
  8. De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J. B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. (2010). "Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa". Proceedings of the National Academy of Sciences. 107 (33): 14691–6. Bibcode:2010PNAS..10714691D. doi: 10.1073/pnas.1005963107 . PMC   2930426 . PMID   20679230.
  9. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD (October 7, 2011). "Linking long-term dietary patterns with gut microbial enterotypes". Science. 334 (6052): 105–8. Bibcode:2011Sci...334..105W. doi:10.1126/science.1208344. PMC   3368382 . PMID   21885731.
  10. Andrew H. Moeller; Patrick H. Degnan; Anne E. Pusey; Michael L. Wilson; Beatrice H. Hahn; Howard Ochman (November 13, 2012). "Chimpanzees and humans harbour compositionally similar gut enterotypes". Nature Communications. 3 (1179): 1179. Bibcode:2012NatCo...3.1179M. doi:10.1038/ncomms2159. PMC   3520023 . PMID   23149725.