Exterior space

Last updated

In mathematics, the notion of externology in a topological space X generalizes the basic properties of the family

Contents

εXcc = {E ⊆ X : X\E is a closed compact subset of X}

of complements of the closed compact subspaces of X, which are used to construct its Alexandroff compactification. An externology permits to introduce a notion of end [1] point, to study the divergence of nets in terms of convergence to end points and it is a useful tool for the study and classification of some families of non compact topological spaces. It can also be used to approach a topological space as the limit of other topological spaces: the externologies are very useful when a compact metric space embedded in a Hilbert space is approached by its open neighbourhoods.

Definition

Let (X,τ) be a topological space. An externology on (X,τ) is a non-empty collection ε of open subsets satisfying:

An exterior space(X,τ,ε) consists of a topological space (X,τ) together with an externology ε. An open E which is in ε is said to be an exterior-open subset. A map f:(X,τ,ε) → (X',τ',ε') is said to be an exterior map if it is continuous and f−1(E) ∈ ε, for all E ∈ ε'.

The category of exterior spaces and exterior maps will be denoted by E. It is remarkable that E is a complete and cocomplete category.

Some examples of exterior spaces

Applications of exterior spaces

Related Research Articles

Homeomorphism Isomorphism in topology (mathematics)

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape or form, introduced to mathematics by Henri Poincaré in 1895.

Topology Branch of mathematics

In mathematics, topology is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

Open set Basic subset of a topological space

In mathematics, open sets are a generalization of open intervals in the real line. In a metric space—that is, when a distance function is defined—open sets are the sets that, with every point P, contain all points that are sufficiently near to P.

Topological group Group that is a topological space with continuous group action

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

General topology Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

Homotopy Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945.

In mathematics, the Lyusternik–Schnirelmann category of a topological space is the homotopy invariant defined to be the smallest integer number such that there is an open covering of with the property that each inclusion map is nullhomotopic. For example, if is a sphere, this takes the value two.

In mathematics, a locally compact topological group G has property (T) if the trivial representation is an isolated point in its unitary dual equipped with the Fell topology. Informally, this means that if G acts unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector. The formal definition, introduced by David Kazhdan (1967), gives this a precise, quantitative meaning.

In mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space.

In topology, a branch of mathematics, the ends of a topological space are, roughly speaking, the connected components of the "ideal boundary" of the space. That is, each end represents a topologically distinct way to move to infinity within the space. Adding a point at each end yields a compactification of the original space, known as the end compactification.

Tudor Ganea was a Romanian-American mathematician, known for his work in algebraic topology, especially homotopy theory. Ganea left Communist Romania to settle in the United States in the early 1960s. He taught at the University of Washington.

Shape theory is a branch of topology that provides a more global view of the topological spaces than homotopy theory. The two coincide on compacta dominated homotopically by finite polyhedra. Shape theory associates with the Čech homology theory while homotopy theory associates with the singular homology theory.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

References

  1. 1 2 "proper homotopy theory in nLab". ncatlab.org.