FMRI lie detection

Last updated

fMRI lie detection is a field of lie detection using functional magnetic resonance imaging (fMRI). FMRI looks to the central nervous system to compare time and topography of activity in the brain for lie detection. While a polygraph detects anxiety-induced changes in activity in the peripheral nervous system, fMRI purportedly measures blood flow to areas of the brain involved in deception.

Contents

History

Psychiatrist and scientific researcher Daniel Langleben was inspired to test lie detection while he was at Stanford University studying the effects of a drug on children with attention deficit disorder (ADD). [1] He found that these children have a more difficult time inhibiting the truth. [2] He postulated that lying requires increased brain activity compared to truth because the truth must be suppressed, essentially creating more work for the brain. In 2001, he published his first work with lie detection using a modified form of the Guilty Knowledge Test, which is sometimes used in polygraph tests. [3] The subjects, right-handed, male college students, were given a card and a Yes/No handheld clicker. [4] They were told to lie to a computer asking questions while they underwent a brain scan only when the question would reveal their card. [5] [6] The subjects were given $20 for participating, and told they would receive more money if they deceived the computer; however, none did. [7]

His studies showed that the inferior and superior prefrontal and anterior cingulate gyri and the parietal cortex showed increased activity during deception. [8] In 2002, he licensed his methods for lie detection to the No Lie MRI company located in San Diego, California.

Working

As "Prospects of fMRI as a Lie Detector" [9] states, fMRIs use electromagnets to create pulse sequences in the cells of the brain. The fMRI scanner then detects the different pulses and fields that are used to distinguish tissue structures and the distinction between layers of the brain, matter type, and the ability to see growths. The functional component allows researchers to see activation in the brain over time and assess efficiency and connectivity by comparing blood use in the brain, which allows for the identification of which portions of the brain are using more oxygen, and thus being used during a specific task. This is called the blood-oxygen-level-dependent (BOLD) hemodynamic response. [10]

FMRI data have been examined through the lens of machine learning algorithms to decode whether subjects believed or disbelieved statements, ranging from mathematical, semantic to religious belief statements. In this study, independent component features were used to train the algorithms, achieving up to 90% accuracy on predicting a subjects response, when prompted to indicate with a button press whether they believed or disbelieved a given assertion. [11]

Brain activation

Activation of BA 40, the superior parietal lobe, the lateral left MRG, the striatum, and left thalamus was unique [12] to truth while activation of the precuneus, posterior cingulate gyrus, prefrontal cortex, and cerebellum will be used to show a similar network for truth and lie. [12] The most brain activity occurs in both sides of the prefrontal cortex, which is linked to response inhibition. This indicates that deception may involve inhibition of truthful responses. Overall bilateral activation occurs in deception in the middle frontal gyrus, parahippocampal gyrus, the precuneus, and the cerebellum. [12] When looking into the different styles of lying we see differentiation in the locations of activation. Spontaneous lies require retrieval from the semantic and episodic memory to be able to quickly formulate a viable situation that remains in working memory while visual images are created to further hide the truth. The areas associated with this retrieval, the ventrolateral prefrontal cortex, anterior prefrontal cortex, and precuneus, are activated as well as the dorsolateral prefrontal cortex, anterior cingulate, and posterior visual cortex are activated. The anterior cingulate cortex is used for cross-checking and probability. For well-rehearsed, memorized, and coherent lies episodic memory activation is needed. This creates increased activation in the right anterior prefrontal cortex, BA 10, and the precuneus. The Parahippocampal cortex may be used in this process to generalize lies to situations because no cross-checking is needed. Newer studies have considered the salience of lying in a variety of situations. [12] If a lie is of lower salience activation is broader and general while salient lies have specific activation in regions associated with inhibition and selection. [13] Many areas are much more active in lying than truth possibly meaning its harder to retrieve false information compared to true memories [9] because truth has more encoded retrieval cues. Interestingly, the limbic system, which is involved in many different emotional responses including the sympathetic nervous system, is not activated in deception. [14]

Legality

Historically, fMRI lie detector tests have not been allowed into evidence in legal proceedings, the most famous attempt being Harvey Nathan's insurance fraud case [14] in 2007. [9] This pushback from the legal system may be based on the 1988 Federal Employment Polygraph Protection Act [14] that acts to protect citizens from incriminating themselves and the right to silence. The legal system specifically would require many more studies on the negative false rate to decide if the absence of deception proves innocence. The lack of legal support has not stopped companies like No Lie MRI and CEPHOS from offering private fMRI scans to test deception.

There is potential to use fMRI evidence as a more advanced form of lie detection, particularly in identifying the regions of the brain involved in truth telling, deception, and false memories. [15] False memories are a barrier in validating witness testimonies. Research has shown that when presented a list of semantically related words, participant recollection can often be unintentionally false and additive of words that were not originally present. This is a normal psychological occurrence, but presents numerous problems to a jury when attempting to sort out the facts of a case. [16]

fMRI imaging is also being used to analyze brain activity during intentional lies. Findings have shown that the dorsolateral prefrontal cortex activates when subjects are pretending to know information, but that the right anterior hippocampus activates when a subject presents false recognition in contrast to lying or accurately telling a truth. This indicates that there may be two separate neural pathways for lying and false memory recall. However, there are limitations to how much brain imaging can distinguish between truths and deceptions because these regions are common areas of executive control function; It is difficult to tell if the activation seen is due to the lie told, or something unrelated. [17]

Future research aims to differentiate between when someone has genuinely forgotten an experience and when someone has made an active choice to withhold or fabricate information. Developing this distinction to the point of scientific validity would help discern when defendants are being truthful about their actions and when witnesses are being truthful about their experiences.

Pros and cons

While fMRI studies on deception have claimed detection accuracy as high as 90% many have problems with implementing this style of detection. At a basic level administering, fMRIs is extremely difficult and costly. Only yes or no answers can be used which allows for flexibility [9] in the truth and style of lying. fMRI requires the participant to remain still for long periods and little movements can create issues with the scan. [9] Some people are unable to take one such as those with medical conditions, claustrophobia, or implants. [9] When looking at deception specifically, there is little research on non-compliant individuals. The criminal justice system interacts with many types of criminals that are not often taken into account in fMRI studies such as addicts, juveniles, mentally unstable, and the elderly. [9] Studies have been done on Chinese individuals and their language and cultural differences did not change results, as well as a study (S. Spence 2011) on that 52 schizophrenic patients, 27 of whom were experiencing delusions at the time of the study. While these studies are promising, the lack of extensive research on the populations that would be most affected by fMRIs being admitted into the legal system is a huge drawback. As well, fMRI deception tests look only at changes in activity in the brain which similarly to the polygraph does not show directly that lying is occurring. [9] If dealing with complex styles of lying or questions the need for a control condition [13] is critical to differentiate from other higher emotional states unrelated to deception. Some studies, such as Ganis et al. [9] ., have shown that it is possible to fool an fMRI by learning countermeasures.

Related Research Articles

<span class="mw-page-title-main">Cingulate cortex</span> Part of the brain within the cerebral cortex

The cingulate cortex is a part of the brain situated in the medial aspect of the cerebral cortex. The cingulate cortex includes the entire cingulate gyrus, which lies immediately above the corpus callosum, and the continuation of this in the cingulate sulcus. The cingulate cortex is usually considered part of the limbic lobe.

<span class="mw-page-title-main">Anterior cingulate cortex</span> Brain region

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33.

<span class="mw-page-title-main">Precuneus</span> Region of the parietal lobe of the brain

In neuroanatomy, the precuneus is the portion of the superior parietal lobule on the medial surface of each brain hemisphere. It is located in front of the cuneus. The precuneus is bounded in front by the marginal branch of the cingulate sulcus, at the rear by the parieto-occipital sulcus, and underneath by the subparietal sulcus. It is involved with episodic memory, visuospatial processing, reflections upon self, and aspects of consciousness.

<span class="mw-page-title-main">Frontal lobe</span> Part of the brain

The frontal lobe is the largest of the four major lobes of the brain in mammals, and is located at the front of each cerebral hemisphere. It is parted from the parietal lobe by a groove between tissues called the central sulcus and from the temporal lobe by a deeper groove called the lateral sulcus. The most anterior rounded part of the frontal lobe is known as the frontal pole, one of the three poles of the cerebrum.

<span class="mw-page-title-main">Brodmann area 9</span> Part of the frontal cortex in the brain of humans and other primates

Brodmann area 9, or BA9, refers to a cytoarchitecturally defined portion of the frontal cortex in the brain of humans and other primates. It contributes to the dorsolateral and medial prefrontal cortex.

A mental image is an experience that, on most occasions, significantly resembles the experience of 'perceiving' some object, event, or scene, but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

<span class="mw-page-title-main">Posterior cingulate cortex</span> Caudal part of the cingulate cortex of the brain

The posterior cingulate cortex (PCC) is the caudal part of the cingulate cortex, located posterior to the anterior cingulate cortex. This is the upper part of the "limbic lobe". The cingulate cortex is made up of an area around the midline of the brain. Surrounding areas include the retrosplenial cortex and the precuneus.

Lie detection is an assessment of a verbal statement with the goal to reveal a possible intentional deceit. Lie detection may refer to a cognitive process of detecting deception by evaluating message content as well as non-verbal cues. It also may refer to questioning techniques used along with technology that record physiological functions to ascertain truth and falsehood in response. The latter is commonly used by law enforcement in the United States, but rarely in other countries because it is based on pseudoscience.

<span class="mw-page-title-main">Dorsolateral prefrontal cortex</span> Area of the prefrontal cortex of primates

The dorsolateral prefrontal cortex is an area in the prefrontal cortex of the primate brain. It is one of the most recently derived parts of the human brain. It undergoes a prolonged period of maturation which lasts into adulthood. The DLPFC is not an anatomical structure, but rather a functional one. It lies in the middle frontal gyrus of humans. In macaque monkeys, it is around the principal sulcus. Other sources consider that DLPFC is attributed anatomically to BA 9 and 46 and BA 8, 9 and 10.

<span class="mw-page-title-main">Default mode network</span> Large-scale brain network active when not focusing on an external task

In neuroscience, the default mode network (DMN), also known as the default network, default state network, or anatomically the medial frontoparietal network (M-FPN), is a large-scale brain network primarily composed of the dorsal medial prefrontal cortex, posterior cingulate cortex/precuneus and angular gyrus. It is best known for being active when a person is not focused on the outside world and the brain is at wakeful rest, such as during daydreaming and mind-wandering. It can also be active during detailed thoughts related to external task performance. Other times that the DMN is active include when the individual is thinking about others, thinking about themselves, remembering the past, and planning for the future.

The biology of obsessive–compulsive disorder (OCD) refers biologically based theories about the mechanism of OCD. Cognitive models generally fall into the category of executive dysfunction or modulatory control. Neuroanatomically, functional and structural neuroimaging studies implicate the prefrontal cortex (PFC), basal ganglia (BG), insula, and posterior cingulate cortex (PCC). Genetic and neurochemical studies implicate glutamate and monoamine neurotransmitters, especially serotonin and dopamine.

The neural basis of self is the idea of using modern concepts of neuroscience to describe and understand the biological processes that underlie humans' perception of self-understanding. The neural basis of self is closely related to the psychology of self with a deeper foundation in neurobiology.

<span class="mw-page-title-main">Neuroscience of sex differences</span> Characteristics of the brain that differentiate the male brain and the female brain

The neuroscience of sex differences is the study of characteristics that separate the male and female brain. Psychological sex differences are thought by some to reflect the interaction of genes, hormones, and social learning on brain development throughout the lifespan.

The dorsal nexus is an area within the dorsal medial prefrontal cortex that serves as an intersection point for multiple brain networks. Research suggests it plays a role in the maintenance and manipulation of information, as well as supporting the control of cognitive functions such as behavior, memory, and conflict resolution. Abnormally increased connectivity between these networks through the Dorsal Nexus has been associated with certain types of depression. The activity generated by this abnormally high level of connectivity during a depressive state can be identified through Magnetic resonance imaging (MRI) and Positron emission tomography (PET).

Cognitive humor processing refers to the neural circuitry and pathways that are involved in detecting incongruities of various situations presented in a humorous manner. Over the past decade, many studies have emerged utilizing fMRI studies to describe the neural correlates associated with how a human processes something that is considered "funny". Conceptually, humor is subdivided into two elements: cognitive and affective. The cognitive element, known as humor detection, refers to understanding the joke. Usually, this is characterized by the perceiver attempting to comprehend the disparities between the punch line and prior experience. The affective element, otherwise known as humor appreciation, is involved with enjoying the joke and producing visceral, emotional responses depending on the hilarity of the joke. This ability to comprehend and appreciate humor is a vital aspect of social functioning and is a significant part of the human condition that is relevant from a very early age. Humor comprehension develops in parallel with growing cognitive and language skills during childhood, while its content is mostly influenced by social and cultural factors. A further approach is described which refers to humor as an attitude related to strains. Humorous responses when confronted with troubles are discussed as a skill often associated with high social competence. The concept of humor has also been shown to have therapeutic effects, improving physiological systems such as the immune and central nervous system. It also has been shown to help cope with stress and pain. In sum, humor proves to be a personal resource throughout the life span, and helps support the coping of everyday tasks.

Daniel Langleben is a psychiatrist, professor, and scientific researcher. He pioneered a technique for using functional magnetic resonance imaging (fMRI) as a means of lie detection. He has also studied the brain effects of packaging and advertising and how infants' cuteness motivates caretaking in adults.

An identity disturbance is a deficiency or inability to maintain one or more major components of identity. These components include a sense of continuity over time; emotional commitment to representations of self, role relationships, core values and self-standards; development of a meaningful world view; and recognition of one's place in the world.

Neuromorality is an emerging field of neuroscience that studies the connection between morality and neuronal function. Scientists use fMRI and psychological assessment together to investigate the neural basis of moral cognition and behavior. Evidence shows that the central hub of morality is the prefrontal cortex guiding activity to other nodes of the neuromoral network. A spectrum of functional characteristics within this network to give rise to both altruistic and psychopathological behavior. Evidence from the investigation of neuromorality has applications in both clinical neuropsychiatry and forensic neuropsychiatry.

Meditation and pain is the study of the physiological mechanisms underlying meditation-specifically its neural components- that implicate it in the reduction of pain perception.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

References

  1. Silberman, Steve (2006). "Don't Even Think About Lying". Wired. pp. Issue 14.01. Retrieved 9 July 2014.
  2. Prospect: Politics, Essay, Review. C. Seaford. October 2009.
  3. Zack Lynch; Byron Laursen (21 July 2009). The Neuro Revolution: How Brain Science Is Changing Our World . St. Martin's Press. pp.  29. ISBN   978-1-4299-8823-0.
  4. Bonnier Corporation (August 2002). "Popular Science". The Popular Science Monthly. Bonnier Corporation: 58. ISSN   0161-7370.
  5. Boy Scouts of America, Inc. (January 2005). "Boys' Life". Boys' Life. Inkprint Edition. Boy Scouts of America, Inc.: 11. ISSN   0006-8608.
  6. Committee on Science, Technology, Law (26 September 2011). Reference Manual on Scientific Evidence:: Third Edition. National Academies Press. p. 803. ISBN   978-0-309-21421-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. Allan Pease; Barbara Pease (1 January 2004). Why Men Don't Have a Clue and Women Always Need More Shoes: The Ultimate Guide to the Opposite Sex . Broadway Books. pp.  272. ISBN   978-0-7679-1610-3.
  8. Langleben, Daniel (2002). "Brain activity during simulated deception: an event-related functional magnetic resonance study". NeuroImage. 15 (3): 727–32. doi:10.1006/nimg.2001.1003. PMID   11848716. S2CID   14676750.
  9. 1 2 3 4 5 6 7 8 9 Rusconi, Elena; Mitchener-Nissen, Timothy (2013). "Prospects of functional magnetic resonance imaging as lie detector". Frontiers in Human Neuroscience. 7: 594. doi: 10.3389/fnhum.2013.00594 . PMC   3781577 . PMID   24065912.
  10. Simpson JR (2008). "Functional MRI lie detection: too good to be true?". J. Am. Acad. Psychiatry Law. 36 (4): 491–498. PMID   19092066.
  11. Douglas PK (2011). "Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief". NeuroImage. 56 (2): 544–553. doi:10.1016/j.neuroimage.2010.11.002. PMC   3099263 . PMID   21073969.
  12. 1 2 3 4 Ganis, G.; Kosslyn, S. M.; Stose, S.; Thompson, W. L.; Yurgelun-Todd, D. A. (2003). "Neural Correlates of Different Types of Deception: An fMRI Investigation". Cerebral Cortex. 13 (8): 830–836. doi: 10.1093/cercor/13.8.830 . PMID   12853369.
  13. 1 2 Langleben, Daniel D.; Loughead, James W.; Bilker, Warren B.; Ruparel, Kosha; Childress, Anna Rose; Busch, Samantha I.; Gur, Ruben C. (2005). "Telling truth from lie in individual subjects with fast event-related fMRI". Human Brain Mapping. 26 (4): 262–272. doi:10.1002/hbm.20191. PMC   6871667 . PMID   16161128.
  14. 1 2 3 Langleben, D. D.; Dattilio, F. M. (2008). "Commentary: The future of forensic functional brain imaging". The Journal of the American Academy of Psychiatry and the Law. 36 (4): 502–4. PMID   19092068.
  15. Langleben, Daniel D.; Moriarty, Jane Campbell (2013-05-01). "Using Brain Imaging for Lie Detection: Where Science, Law and Research Policy Collide". Psychology, Public Policy, and Law. 19 (2): 222–234. doi:10.1037/a0028841. ISSN   1076-8971. PMC   3680134 . PMID   23772173.
  16. Abe, Nobuhito (December 2008). "Neural Correlates of True Memory, False Memory, and Deception" (PDF). Cerebral Cortex. 18 (12): 2811–2819. doi:10.1093/cercor/bhn037. PMC   2583150 . PMID   18372290. Archived from the original (PDF) on 2011-01-14.
  17. Farah, Martha; Hutchinson, J. Benjamin; Phelps, Elizabeth; Wagner, Anthony (2014-01-01). "Functional MRI-Based Lie Detection: Scientific and Societal Challenges". Nature Reviews Neuroscience. 15 (2): 123–131. doi:10.1038/nrn3665. PMID   24588019. S2CID   8480199.