Father tongue hypothesis

Last updated
Language families and Y-DNA distributions in Africa
African language families.png
Distribution of language families
E1b1a.png
Distribution of Y-DNA:E1b1a (related to Niger-Congo languages)
E1b1b.png
Distribution of Y-DNA:E1b1b (related to Afro-Asiatic languages)
Distribution of Y-Chromosome Haplogroup A in Africa.png
Distribution of Y-DNA:A (related to Khoisan languages and part of Nilo-Saharan languages)

The father tongue hypothesis proposes the idea that humans tend to speak their father's language. The hypothesis is based on a 1997 proposal that linguistic affiliation correlates more closely with Y-chromosomal variation than with mitochondrial DNA variation. The initial work was performed on African and European samples by a team of population geneticists, led by Laurent Excoffier. On the basis of these, and similar findings by other geneticists, the hypothesis was elaborated by historical linguist George van Driem in 2010 that the teaching by a mother of her spouse's tongue to her children is a mechanism by which language has preferentially been spread over time. Focusing on prehistoric language shift in already settled areas, examples worldwide [1] show that as little as 10–20% of prehistoric male immigration can (but need not) cause a language switch, indicating an elite imposition such as may have happened with the appearance of the first farmers or metalworkers in the Neolithic, Bronze and Iron Ages.

Contents

Early autosomal research

Before the discovery of mtDNA variation and Y-chromosomal variation in the 1980s and 1990s, respectively, [2] [3] it was not possible to distinguish male from female effects in population genetics. Instead, researchers had to rely on autosomal variation, starting with the first population genetic study using blood groups by Ludwik Hirszfeld in 1919. [4] Later other genetic polymorphisms were used, for example polymorphisms of proteins of the blood plasma, polymorphisms of human lymphocyte antigens or polymorphisms of immunoglobulins. [5] On this basis, correlations between languages and genetic variation occasionally were proposed, [6] [7] but sex-specific questions could not be addressed until the 1990s, when both mtDNA and Y-chromosomal variation in humans became available for study.

Origin of the hypothesis

The Y chromosome follows patrilineal inheritance, meaning it is only passed on among males, from father to son. Mitochondrial DNA on the other hand follows matrilineal inheritance, meaning it is only passed on from the mother to her children and from her daughters to their children. In 1997 Laurent Excoffier, his student Estella Poloni and his team reported that they had found a strong correlation between the Y-chromosomal sequence P49a,f/Taql variation and linguistics, while not being able to find such a correspondence for the mtDNA variation. Poloni et al. proposed the possible consequences of such a correlation, i.e. the Father Tongue hypothesis:

"As a consequence, the female-specific diversity of our genome would fit less well with geography and linguistics than would our male-specific component. [...] If that were to prove to be the case, then the common belief that we speak our mother's tongue should be revised in favor of the concept of a ‘father's tongue’." [8]

Estella Poloni also presented the Father Tongue hypothesis at an international conference in Paris in April 2000. [9]

On the basis of this population genetic work, historical linguist George van Driem elaborated the Father Tongue hypothesis in his ethnolinguistic publications and in population genetic publications which he has co-authored. [10] At the Indo-Pacific Prehistory Association conference in Taipei in 2002 he proposed that

"a mother teaching her children their father’s tongue has been a recurrent, ubiquitous and prevalent pattern throughout linguistic history, […] some of the mechanisms of language change over time are likely to be inherent to the dynamics of this pathway of transmission. Such correlations are observed worldwide." [11]

Discovery of Y-chromosomal markers for languages

The next development was the discovery of specific Y-chromosomal markers linked to a language. [12] [13] [14] These Y-chromosomal variants do not cause language change, but happened to be carried by the historic or prehistoric male speakers spreading the language. These language-specific Y-chromosomal markers create correlations such as those observed by Poloni et al. 1997, and furthermore allow the geographic extent, the time depth and the male immigration level underlying an unrecorded (prehistoric) language change to be determined.

Examples of father tongues

Distributions of Uralic languages and Y-DNA:N
Linguistic map of the Uralic languages.png
Distribution of Uralic languages (and Yukaghir languages)
Haplogrupo N (ADN-Y).PNG
Distribution of Haplogroup N (Y-DNA)
Distributions of Sino-Tibetan languages and Y-DNA:O2
Lenguas sino-tibetanas.png
Distribution of Sino-Tibetan languages
Human Y-chromosome Haplogroup O-M122 spatial distribution.png
Distribution of Haplogroup O2 (Y-DNA)

There are several salient examples where the prehistoric diffusion of a language family correlates strongly with the diffusion of Y-chromosomal haplogroups. [1]

Implications

The Father Tongue hypothesis has far-reaching implications for several processes in linguistics such as language change, language acquisition and sociolinguistics. The Father Tongue hypothesis also has implications for language acquisition, as the hypothesis suggests an evolutionary explanation for why females may be better in some aspects of language performance and acquisition. [20] [21] [22] [23] [24] [25] [26] [27] [28]

The historical linguist George van Driem interpreted the correlation of Y-chromosomal haplogroups and language families as indicating that the spread of language families was often mediated by male-biased migration, whether these intrusions were martial or something less spectacular. He conjectured that the majority of language communities spoke father tongues rather than mother tongues. [15]

The Father Tongue hypothesis has implications for linguists' understanding of language change. It must be assumed that the dynamics of language change whereby mothers pass on the language of their spouses to their offspring differ from the dynamics of language change in a monolingual community and even from the dynamics of change in a bilingual community where mothers pass on their own language to their children. [29] As a consequence, such dynamics can introduce a discontinuity with the past. For example, it has been observed that Michif, genetically an Algonquian language (like Plains Cree), was relexified by Métis women with Métis French, the language of their husbands, and so the genetic affinity of Michif has come to be almost unidentifiable. [30] [31] [32] If the process of relexification went beyond the possibility of linguistic reconstruction, the dynamics of such a process may obscure the true linguistic heritance of a community. [29]

Exceptions

Genetics does not determine the language spoken by a human being, and the link between Y-chromosomal haplogroups and linguistic affinities is an observed correlation and not a causal link. While father tongues predominate, exceptions to father tongues exist in the world. Two very well-known exceptions are the Balti in northern Pakistan and Hungarians. The mtDNA haplogroups most frequent among Balti are the same as those of the neighbouring Tibetan communities, whereas the Y-chromosomal haplogroups most frequent in Balti males appear to have entered Baltistan from the west with the introduction of Islam. The Balti speak one of the most conservative Tibetan languages. [10] The language of the Balti corresponds to the mtDNA and not to the Y chromosome and is in effect a salient example of a mother tongue. [15] The other well-known exception is Hungarian [ dubious ]. The N1c haplogroup of the Y chromosome, distinguished by Tat-C deletion, is found at a high frequency throughout Uralic language communities, but is virtually missing in Hungarian males. Therefore, while the intrusion of the Magyars into what is today Hungary is historically attested and has left clear linguistic evidence, genetically the Magyar intrusion has left no salient genetic traces. Instead, from a genetic point of view, Hungarians strongly resemble a Western Slavic language community. [29]

See also

Related Research Articles

In human genetics, the Y-chromosomal most recent common ancestor is the patrilineal most recent common ancestor (MRCA) from whom all currently living humans are descended. He is the most recent male from whom all living humans are descended through an unbroken line of their male ancestors. The term Y-MRCA reflects the fact that the Y chromosomes of all currently living human males are directly derived from the Y chromosome of this remote ancestor. The analogous concept of the matrilineal most recent common ancestor is known as "Mitochondrial Eve", the most recent woman from whom all living humans are descended matrilineally. As with "Mitochondrial Eve", the title of "Y-chromosomal Adam" is not permanently fixed to a single individual, but can advance over the course of human history as paternal lineages become extinct.

Genetics and archaeogenetics of South Asia is the study of the genetics and archaeogenetics of the ethnic groups of South Asia. It aims at uncovering these groups' genetic histories. The geographic position of the Indian subcontinent makes its biodiversity important for the study of the early dispersal of anatomically modern humans across Asia.

Haplogroup I (M170) is a Y-chromosome DNA haplogroup. It is a subgroup of haplogroup IJ, which itself is a derivative of the haplogroup IJK. Subclades I1 and I2 can be found in most present-day European populations, with peaks in some Northern European and Southeastern European countries.

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

<span class="mw-page-title-main">Haplogroup E-M215</span> Human Y-chromosome DNA haplogroup

E-M215, also known as E1b1b-M215, is a major human Y-chromosome DNA haplogroup. E-M215 has two basal branches, E-M35 and E-M281. E-M35 is primarily distributed in North Africa and the Horn of Africa, and occurs at moderate frequencies in the Middle East, Europe, and Southern Africa. E-M281 occurs at a low frequency in Ethiopia.

Haplogroup E-M96 is a human Y-chromosome DNA haplogroup. It is one of the two main branches of the older and ancestral haplogroup DE, the other main branch being haplogroup D. The E-M96 clade is divided into two main subclades: the more common E-P147, and the less common E-M75.

Haplogroup K or K-M9 is a genetic lineage within human Y-chromosome DNA haplogroup. A sublineage of haplogroup IJK, K-M9, and its descendant clades represent a geographically widespread and diverse haplogroup. The lineages have long been found among males on every continent except Antarctica.

Haplogroup P also known as P-F5850 or K2b2 is a Y-chromosome DNA haplogroup in human genetics. P-F5850 is a branch of K2b, which is a branch of Haplogroup K2 (K-M526).

Haplogroup R, or R-M207, is a Y-chromosome DNA haplogroup. It is both numerous and widespread amongst modern populations.

In human genetics, Haplogroup O-M268, also known as O1b, is a Y-chromosome DNA haplogroup. Haplogroup O-M268 is a primary subclade of haplogroup O-F265, itself a primary descendant branch of Haplogroup O-M175.

In human genetics, Haplogroup O-M119 is a Y-chromosome DNA haplogroup. Haplogroup O-M119 is a descendant branch of haplogroup O-F265 also known as O1a, one of two extant primary subclades of Haplogroup O-M175. The same clade previously has been labeled as O-MSY2.2.

Haplogroup DE is a human Y-chromosome DNA haplogroup. It is defined by the single nucleotide polymorphism (SNP) mutations, or UEPs, M1(YAP), M145(P205), M203, P144, P153, P165, P167, P183. DE is unique because it is distributed in several geographically distinct clusters. An immediate subclade, haplogroup D, is mainly found in East Asia, parts of Central Asia, and the Andaman Islands, but also sporadically in West Africa and West Asia. The other immediate subclade, haplogroup E, is common in Africa, and to a lesser extent the Middle East and southern Europe.

The various ethnolinguistic groups found in the Caucasus, Central Asia, Europe, the Middle East, North Africa and/or South Asia demonstrate differing rates of particular Y-DNA haplogroups.

Haplogroup E-V68, also known as E1b1b1a, is a major human Y-chromosome DNA haplogroup found in North Africa, the Horn of Africa, Western Asia and Europe. It is a subclade of the larger and older haplogroup, known as E1b1b or E-M215. The E1b1b1a lineage is identified by the presence of a single nucleotide polymorphism (SNP) mutation on the Y chromosome, which is known as V68. It is a subject of discussion and study in genetics as well as genetic genealogy, archaeology, and historical linguistics.

<span class="mw-page-title-main">Peopling of India</span> Immigration patterns of different races of people of India

The peopling of India refers to the migration of Homo sapiens into the Indian subcontinent. Anatomically modern humans settled India in multiple waves of early migrations, over tens of millennia. The first migrants came with the Coastal Migration/Southern Dispersal 65,000 years ago, whereafter complex migrations within South and Southeast Asia took place. West-Asian (Iranian) hunter-gatherers migrated to South Asia after the Last Glacial Period but before the onset of farming. Together with ancient South Asian hunter-gatherers they formed the population of the Indus Valley Civilisation (IVC).

Y-DNA haplogroups in populations of Europe are haplogroups of the male Y-chromosome found in European populations.

<span class="mw-page-title-main">Y-DNA haplogroups in populations of East and Southeast Asia</span>

The tables below provide statistics on the human Y-chromosome DNA haplogroups most commonly found among ethnolinguistic groups and populations from East and South-East Asia.

<span class="mw-page-title-main">Munda peoples</span> Ethno-linguistic groups of people found in South Asia

The Munda peoples of eastern and central parts of the Indian subcontinent are any of several Munda speaking ethno-linguistic groups of Austro-asiatic language family, formerly also known as Kolarian, and spoken by about nine million people.

Various genetic studies on Filipinos have been performed, to analyze the population genetics of the various ethnic groups in the Philippines.

This article summarizes the genetic makeup and population history of East Asian peoples and their connection to genetically related populations, as well as Oceanians and partly, Central Asians and South Asians, which are collectively referred to as "East Eurasians" in population genomics.

References

  1. 1 2 Forster, Peter; Renfrew C (2011). "Mother Tongue and Y Chromosomes". Science. 333 (6048): 1390–1391. Bibcode:2011Sci...333.1390F. doi:10.1126/science.1205331. PMID   21903800. S2CID   43916070.
  2. Ferris, SD; Brown WM, Davidson WS, Wilson AC (1981). "Extensive polymorphism in the mitochondrial DNA of apes". Proceedings of the National Academy of Sciences of the USA. 78 (10): 6319–6323. Bibcode:1981PNAS...78.6319F. doi: 10.1073/pnas.78.10.6319 . PMC   349030 . PMID   6273863.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Underhill, Peter; Jin L, Lin AA, Mehdi SQ, Jenkins T, Vollrath D, Davis RW, Cavalli-Sforza LL, Oefner PJ (1997). "Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography". Genome Research. 7 (10): 996–1005. doi:10.1101/gr.7.10.996. PMC   310671 . PMID   9331370.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Hirszfeld, L; Hirszfeld H (1919). "Essai d'application des méthodes sérologiques au probléme des races". Anthropologie. 29: 505–537.
  5. Cavalli-Sforza, Luigi Luca; Menozzi P, Piazza A (1994). The history and Geography of Human Genes. Princeton, New Jersey: Princeton University Press.
  6. Darlington, CD (1947). "The genetic component of language". Heredity. 1 (3): 269–286. doi: 10.1038/hdy.1947.18 .
  7. Cavalli-Sforza, LL; Piazza A, Menozzi P, Mountain J (1988). "Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data". Proceedings of the National Academy of Sciences of the USA. 85 (16): 6002–6006. Bibcode:1988PNAS...85.6002C. doi: 10.1073/pnas.85.16.6002 . PMC   281893 . PMID   3166138.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Poloni, Estela S; Semino O, Passarino G, Santachiara-Benerecetti AS, Dupanloup I, Langaney A, Excoffier L (1997). "Human genetic affinities for Y-chromosome p49a,f/TaqI haplotypes show strong correspondence with linguistics". American Journal of Human Genetics. 61 (5): 1015–1035. doi:10.1086/301602. PMC   1716025 . PMID   9346874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Poloni, Estella Simone; et al. (2000). "Languages and genes: Modes of transmission observed through the analysis of male-specific and female-specific genes". In Jean-Louis Dessalles and Laleh Ghadakpour (ed.). Proceedings: Evolution of Language, 3rd International Conference 3-6 April 2000. Paris: École Nationale Supérieure des Télécommunications. pp. 185–186.
  10. 1 2 3 4 van Driem, George (2007). "Austroasiatic phylogeny and the Austroasiatic homeland in light of recent population genetic studies". Mon-Khmer Studies. 37: 1–14.
  11. van Driem, George (2012). "The ethnolinguistic identity of the domesticators of Asian rice" (PDF). Comptes Rendus Palevol. 11 (2): 117–132. Bibcode:2012CRPal..11..117V. doi:10.1016/j.crpv.2011.07.004.
  12. 1 2 Zerjal, Tatiana; Pandya A, Santos FR, Adhikari R, Tarazona E, Kayser M, Evgrafov O, Singh L, Thangaraj K, Destro-Bisol G, Thomas MG, Qamar R, Mehdi SQ, Rosser ZH, Hurles ME, Jobling MA, Tyler-Smith C (1999). "The use of Y-chromosomal DNA variation to investigate population history: Recent male spread in Asia and Europe". In Surinder S Papiha, Ranjan Deka and Ranajit Chakraborty (ed.). Genomic Diversity. Applications in Human Population Genetic Studies. Williamsburg, Virginia 26 July - 1 Aug 1998. New York: Kluwer Academic/Plenum Publishers. pp. 91–101.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 Chaubey, Gyaneshwer; et al. (2010). "Population genetic structure in Indian Austroasiatic speakers: The role of landscape barriers and sex-specific admixture". Molecular Biology and Evolution. 28 (2): 1013–1024. doi:10.1093/molbev/msq288. PMC   3355372 . PMID   20978040.
  14. Rai, Niraj; et al. (2012). "The phylogeography of Y-chromosome haplogroup H1a1a-M82 reveals the likely Indian origin of the European Romani populations". PLOS ONE. 7 (11): e48477. Bibcode:2012PLoSO...748477R. doi: 10.1371/journal.pone.0048477 . PMC   3509117 . PMID   23209554.
  15. 1 2 3 4 van Driem, George (2012). "Etyma, shouldered adzes and molecular variants". In Andrea Ender, Adrian Leemann and Bernhard Wälchli (ed.). Methods in Contemporary Linguistics. Berlin: Mouton de Gruyter.
  16. Wen, Bo; et al. (2004). "Genetic evidence supports demic diffusion of Han culture". Nature. 431 (7006): 302–305. Bibcode:2004Natur.431..302W. doi:10.1038/nature02878. PMID   15372031. S2CID   4301581.
  17. Wood, Elizabeth T; et al. (2005). "Contrasting patterns of Y chromosome and mtDNA variation in Africa: evidence for sex-biased demographic processes". European Journal of Human Genetics. 13 (7): 867–876. doi: 10.1038/sj.ejhg.5201408 . PMID   15856073.
  18. de Filippo, Cesare; et al. (2011). "Y-Chromosomal Variation in Sub-Saharan Africa: Insights Into the History of Niger-Congo Groups". Molecular Biology and Evolution. 28 (3): 1255–1269. doi:10.1093/molbev/msq312. PMC   3561512 . PMID   21109585.
  19. Gebremeskel, Eyoab I; Ibrahim, Muntaser E (December 2014). "Y-chromosome E haplogroups: their distribution and implication to the origin of Afro-Asiatic languages and pastoralism". European Journal of Human Genetics. 22 (12): 1387–1392. doi:10.1038/ejhg.2014.41. ISSN   1476-5438. PMC   4231410 . PMID   24667790.
  20. Shaywitz, B. A; et al. (1995). "Sex differences in the functional organization of the brain for language". Nature. 373 (6515): 607–609. Bibcode:1995Natur.373..607S. doi:10.1038/373607a0. PMID   7854416. S2CID   4315684.
  21. Pugh, K. R; et al. (1996). "Cerebral organization of component processes in reading". Brain. 119 (4): 1221–1238. doi: 10.1093/brain/119.4.1221 . PMID   8813285.
  22. Pugh, K. R; et al. (1997). "Predicting reading performance from neuroimaging profiles: The cerebral basis of phonological effects in printed word identification". Journal of Experimental Psychology: Human Perception and Performance. 23 (2): 299–318. doi:10.1037/0096-1523.23.2.299. PMID   9103996.
  23. Jaeger; et al. (1998). "Sex differences in brain regions activated by grammatical and reading tasks". NeuroReport. 9 (12): 2803–2807. doi:10.1097/00001756-199808240-00022. PMID   9760124. S2CID   41971376.
  24. Kansaku, K; et al. (2000). "Sex differences in lateralization revealed in the posterior language areas". Cerebral Cortex. 10 (9): 866–872. doi: 10.1093/cercor/10.9.866 . PMID   10982747.
  25. Rossell, S. L; et al. (2002). "Sex differences in functional brain activation during a lexical visual field task". Brain and Language. 80 (1): 97–105. doi:10.1006/brln.2000.2449. PMID   11817892. S2CID   34669770.
  26. Baxter, L. C; et al. (2003). "Sex differences in semantic language processing: A functional MRI study". Brain and Language. 84 (2): 264–272. doi:10.1016/s0093-934x(02)00549-7. PMID   12590915. S2CID   12658733.
  27. Clements, A. M; et al. (2006). "Sex differences in cerebral laterality of language and visuospatial processing". Brain and Language. 98 (2): 150–158. doi:10.1016/j.bandl.2006.04.007. PMID   16716389. S2CID   32525196.
  28. Burman, Douglas D.; et al. (2008). "Sex differences in neural processing of language among children". Neuropsychologia. 46 (5): 1349–1362. doi:10.1016/j.neuropsychologia.2007.12.021. PMC   2478638 . PMID   18262207.
  29. 1 2 3 van Driem, George (2008). "Reflections on the ethnolinguistic prehistory of the greater Himalayan region". In Brigitte Huber, Marianne Volkart and Paul Widmer (ed.). Chomolangma, Demawend und Kasbek: Festschrift für Roland Bielmeier zu seinem 65. Geburtstag (2 vols.). Halle: International Institute for Tibetan and Buddhist Studies. pp. 39–59.
  30. Bakker, Pieter Jan (1992). A language of our own: The genesis of Michif, the mixed Cree-French language of the Canadian Métis. Amsterdam: Universiteit van Amsterdam: doctoral dissertation.
  31. Bakker, Pieter Jan (1994). "Michif, the Cree-French mixed language of the Metis buffalo hunters in Canada". In Peter Bakker and Maarten Mous (ed.). Mixed Languages, 15 Case Studies in Language Intertwining (Studies in Language and Language Use, 13). Amsterdam: Instituut voor Fundamenteel Onderzoek naar Taal en Taalgebruik. pp. 13–33.
  32. van Driem, George (2001). Languages of the Himalayas. Leiden: Brill.