Focal conics

Last updated
Definition of focal conics
A,C: vertices of the ellipse and foci of the hyperbola
E,F: foci of the ellipse and vertices of the hyperbola Fokalkegelschnitte-def.svg
Definition of focal conics
A,C: vertices of the ellipse and foci of the hyperbola
E,F: foci of the ellipse and vertices of the hyperbola
Focal conics: two parabolas
A: vertex of the red parabola and focus of the blue parabola
F: focus of the red parabola and vertex of the blue parabola Fokalkegelschnitte-def-papa.svg
Focal conics: two parabolas
A: vertex of the red parabola and focus of the blue parabola
F: focus of the red parabola and vertex of the blue parabola

In geometry, focal conics are a pair of curves consisting of [1] [2] either

Contents

or

Focal conics play an essential role answering the question: "Which right circular cones contain a given ellipse or hyperbola or parabola (see below)".

Focal conics are used as directrices for generating Dupin cyclides as canal surfaces in two ways. [3] [4]

Focal conics can be seen as degenerate focal surfaces: Dupin cyclides are the only surfaces, where focal surfaces collapse to a pair of curves, namely focal conics. [5]

In Physical chemistry focal conics are used for describing geometrical properties of liquid crystals. [6]

One should not mix focal conics with confocal conics. The latter ones have all the same foci.

Equations and parametric representations

Ellipse and hyperbola

Equations

If one describes the ellipse in the x-y-plane in the common way by the equation

then the corresponding focal hyperbola in the x-z-plane has equation

where is the linear eccentricity of the ellipse with

Parametric representations
ellipse: and
hyperbola:

Two parabolas

Two parabolas in the x-y-plane and in the x-z-plane:

1. parabola: and
2. parabola:

with the semi-latus rectum of both the parabolas.

Right circular cone (green) through an ellipse (blue) Fokalkegelschnitte-kegs-el.svg
Right circular cone (green) through an ellipse (blue)

Right circular cones through an ellipse

Right circular cones through an ellipse Fokalkegelschnitte-bew.svg
Right circular cones through an ellipse
Proof

Given: Ellipse with vertices and foci and a right circular cone with apex containing the ellipse (see diagram).

Because of symmetry the axis of the cone has to be contained in the plane through the foci, which is orthogonal to the ellipse's plane. There exists a Dandelin sphere , which touches the ellipse's plane at the focus and the cone at a circle. From the diagram and the fact that all tangential distances of a point to a sphere are equal one gets:

Hence:

const.

and the set of all possible apices lie on the hyperbola with the vertices and the foci .

Analogously one proves the cases, where the cones contain a hyperbola or a parabola. [7]

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola (/pɛər’əbəʊlə/) is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

<span class="mw-page-title-main">Dandelin spheres</span>

In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also sometimes called focal spheres.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Eccentricity (mathematics)</span> Characteristic of conic sections

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Steiner ellipse</span> Circumellipse of a triangle whose center is the triangles centroid

In geometry, the Steiner ellipse of a triangle, also called the Steiner circumellipse to distinguish it from the Steiner inellipse, is the unique circumellipse whose center is the triangle's centroid. Named after Jakob Steiner, it is an example of a circumconic. By comparison the circumcircle of a triangle is another circumconic that touches the triangle at its vertices, but is not centered at the triangle's centroid unless the triangle is equilateral.

In mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away. This means that the origin O' of the new coordinate system has coordinates (h, k) in the original system. The positive x' and y' directions are taken to be the same as the positive x and y directions. A point P has coordinates (x, y) with respect to the original system and coordinates (x', y') with respect to the new system, where

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, where one circle is inside the other, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

<span class="mw-page-title-main">Spherical conic</span> Curve on the sphere analogous to an ellipse or hyperbola

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

In Euclidean geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two sidelines of the reference triangle at vertices of the triangle.

In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows:

References

  1. Müller- Kruppa, S. 104
  2. Glaeser-Stachel-Odehnal, p. 137
  3. Felix Klein: Vorlesungen Über Höhere Geometrie, Herausgeber: W. Blaschke, Richard Courant, Springer-Verlag, 2013, ISBN   3642498485, S. 58.
  4. Glaeser-Stachel-Odehnal: p. 147
  5. D. Hilbert, S. Cohn-Vossen:Geometry and the Imagination, Chelsea Publishing Company, 1952, p. 218.
  6. Thomas Andrew Waigh: The Physics of Living Processes, Verlag John Wiley & Sons, 2014, ISBN   1118698274, p. 128.
  7. Glaeser-Stachel-Odehnal p. 139