GNL3

Last updated
GNL3
Identifiers
Aliases GNL3 , C77032, E2IG3, NNP47, NS, G protein nucleolar 3
External IDs OMIM: 608011 MGI: 1353651 HomoloGene: 56670 GeneCards: GNL3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_206826
NM_014366
NM_206825

NM_153547
NM_178846

RefSeq (protein)

NP_055181
NP_996561
NP_996562

NP_705775

Location (UCSC)n/a Chr 14: 30.73 – 30.74 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Guanine nucleotide-binding protein-like 3, also known as nucleostemin, is a protein that in humans is encoded by the GNL3 gene. [4] [5] [6] It is found within the nucleolus that binds p53. [7] Nucleostemin regulates the cell cycle and affects cell differentiation, decreasing in amount as this differentiation progresses. [7] It is a marker for many stem cells and cancer cells. [8]

Contents

Interactions

GNL3 has been shown to interact with Mdm2 [9] and P53. [5]

Related Research Articles

p53 Mammalian protein found in Homo sapiens

p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">ABL (gene)</span> Human protein-coding gene on chromosome 9

Tyrosine-protein kinase ABL1 also known as ABL1 is a protein that, in humans, is encoded by the ABL1 gene located on chromosome 9. c-Abl is sometimes used to refer to the version of the gene found within the mammalian genome, while v-Abl refers to the viral gene, which was initially isolated from the Abelson murine leukemia virus.

<span class="mw-page-title-main">Mdm2</span> Protein-coding gene in the species Homo sapiens

Mouse double minute 2 homolog (MDM2) also known as E3 ubiquitin-protein ligase Mdm2 is a protein that in humans is encoded by the MDM2 gene. Mdm2 is an important negative regulator of the p53 tumor suppressor. Mdm2 protein functions both as an E3 ubiquitin ligase that recognizes the N-terminal trans-activation domain (TAD) of the p53 tumor suppressor and as an inhibitor of p53 transcriptional activation.

p21 Protein

p21Cip1, also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1, is a cyclin-dependent kinase inhibitor (CKI) that is capable of inhibiting all cyclin/CDK complexes, though is primarily associated with inhibition of CDK2. p21 represents a major target of p53 activity and thus is associated with linking DNA damage to cell cycle arrest. This protein is encoded by the CDKN1A gene located on chromosome 6 (6p21.2) in humans.

p14ARF is an alternate reading frame protein product of the CDKN2A locus. p14ARF is induced in response to elevated mitogenic stimulation, such as aberrant growth signaling from MYC and Ras (protein). It accumulates mainly in the nucleolus where it forms stable complexes with NPM or Mdm2. These interactions allow p14ARF to act as a tumor suppressor by inhibiting ribosome biogenesis or initiating p53-dependent cell cycle arrest and apoptosis, respectively. p14ARF is an atypical protein, in terms of its transcription, its amino acid composition, and its degradation: it is transcribed in an alternate reading frame of a different protein, it is highly basic, and it is polyubiquinated at the N-terminus.

p53 upregulated modulator of apoptosis Protein-coding gene in the species Homo sapiens

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

<span class="mw-page-title-main">PCAF</span> Protein-coding gene in the species Homo sapiens

P300/CBP-associated factor (PCAF), also known as K(lysine) acetyltransferase 2B (KAT2B), is a human gene and transcriptional coactivator associated with p53.

<span class="mw-page-title-main">E2F1</span> Protein-coding gene in the species Homo sapiens

Transcription factor E2F1 is a protein that in humans is encoded by the E2F1 gene.

<span class="mw-page-title-main">60S ribosomal protein L5</span> Protein found in humans

60S ribosomal protein L5 is a protein that in humans is encoded by the RPL5 gene.

<span class="mw-page-title-main">PIAS1</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS1 is an enzyme that in humans is encoded by the PIAS1 gene.

<span class="mw-page-title-main">MDM4</span> Protein-coding gene in the species Homo sapiens

Protein Mdm4 is a protein that in humans is encoded by the MDM4 gene.

<span class="mw-page-title-main">TP53BP2</span> Protein-coding gene in the species Homo sapiens

Apoptosis-stimulating of p53 protein 2 (ASPP2) also known as Bcl2-binding protein (Bbp) and tumor suppressor p53-binding protein 2 (p53BP2) is a protein that in humans is encoded by the TP53BP2 gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">FOXO4</span> Protein

Forkhead box protein O4 is a protein that in humans is encoded by the FOXO4 gene.

<span class="mw-page-title-main">60S ribosomal protein L11</span> Protein found in humans

60S ribosomal protein L11 is a protein that in humans is encoded by the RPL11 gene.

<span class="mw-page-title-main">CCNG1</span> Protein-coding gene in the species Homo sapiens

Cyclin-G1 is a protein that in humans is encoded by the CCNG1 gene.

<span class="mw-page-title-main">60S ribosomal protein L23</span> Protein found in humans

60S ribosomal protein L23 is a protein that in humans is encoded by the RPL23 gene.

<span class="mw-page-title-main">PPP1R13B</span> Protein-coding gene in the species Homo sapiens

Apoptosis-stimulating of p53 protein 1 is a protein that in humans is encoded by the PPP1R13B gene.

<span class="mw-page-title-main">60S ribosomal protein L26</span> Protein found in humans

60S ribosomal protein L26 is a protein that in humans is encoded by the RPL26 gene.

Protein acetylation are acetylation reactions that occur within living cells as drug metabolism, by enzymes in the liver and other organs. Pharmaceuticals frequently employ acetylation to enable such esters to cross the blood–brain barrier, where they are deacetylated by enzymes (carboxylesterases) in a manner similar to acetylcholine. Examples of acetylated pharmaceuticals are diacetylmorphine (heroin), acetylsalicylic acid (aspirin), THC-O-acetate, and diacerein. Conversely, drugs such as isoniazid are acetylated within the liver during drug metabolism. A drug that depends on such metabolic transformations in order to act is termed a prodrug.

<span class="mw-page-title-main">G protein nucleolar 3 like</span> Protein-coding gene in the species Homo sapiens

G protein nucleolar 3 like is a protein that in humans is encoded by the GNL3L gene.

References

  1. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000042354 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC, Aldaz CM (Nov 2000). "Effects of estrogen on global gene expression: identification of novel targets of estrogen action". Cancer Res. 60 (21): 5977–5983. PMID   11085516.
  5. 1 2 Tsai RY, McKay RD (Dec 2002). "A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells". Genes Dev. 16 (23): 2991–3003. doi:10.1101/gad.55671. PMC   187487 . PMID   12464630.
  6. "Entrez Gene: GNL3 guanine nucleotide binding protein-like 3 (nucleolar)".
  7. 1 2 Ross MH, Pawlina W (2011). Histology : a text and atlas : with correlated cell and molecular biolog. Philadelphia: Wolters Kluwer/Lippincott Williams Wilkins Health. p. 79. ISBN   978-0-7817-7200-6.
  8. Niall M. Adams (29 November 2010). Advances in Nuclear Architecture. Springer. p. 31. ISBN   978-90-481-9898-6 . Retrieved 27 September 2011.
  9. Dai MS, Sun XX, Lu H (Jul 2008). "Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2". Mol. Cell. Biol. 28 (13): 4365–4376. doi:10.1128/MCB.01662-07. PMC   2447154 . PMID   18426907.

Further reading