Genetic algebra

Last updated

In mathematical genetics, a genetic algebra is a (possibly non-associative) algebra used to model inheritance in genetics. Some variations of these algebras are called train algebras, special train algebras, gametic algebras, Bernstein algebras, copular algebras, zygotic algebras, and baric algebras (also called weighted algebra). The study of these algebras was started by Ivor Etherington  ( 1939 ).

Contents

In applications to genetics, these algebras often have a basis corresponding to the genetically different gametes, and the structure constants of the algebra encode the probabilities of producing offspring of various types. The laws of inheritance are then encoded as algebraic properties of the algebra.

For surveys of genetic algebras see Bertrand (1966), Wörz-Busekros (1980) and Reed (1997).

Baric algebras

Baric algebras (or weighted algebras) were introduced by Etherington (1939). A baric algebra over a field  K is a possibly non-associative algebra over K together with a homomorphism w, called the weight, from the algebra to K. [1]

Bernstein algebras

A Bernstein algebra, based on the work of Sergei NatanovichBernstein  ( 1923 ) on the Hardy–Weinberg law in genetics, is a (possibly non-associative) baric algebra B over a field K with a weight homomorphism w from B to K satisfying . Every such algebra has idempotents e of the form with . The Peirce decomposition of B corresponding to e is

where and . Although these subspaces depend on e, their dimensions are invariant and constitute the type of B. An exceptional Bernstein algebra is one with . [2]

Copular algebras

Copular algebras were introduced by Etherington (1939 , section 8)

Evolution algebras

An evolution algebra over a field is an algebra with a basis on which multiplication is defined by the product of distinct basis terms being zero and the square of each basis element being a linear form in basis elements. A real evolution algebra is one defined over the reals: it is non-negative if the structure constants in the linear form are all non-negative. [3] An evolution algebra is necessarily commutative and flexible but not necessarily associative or power-associative. [4]

Gametic algebras

A gametic algebra is a finite-dimensional real algebra for which all structure constants lie between 0 and 1. [5]

Genetic algebras

Genetic algebras were introduced by Schafer (1949) who showed that special train algebras are genetic algebras and genetic algebras are train algebras.

Special train algebras

Special train algebras were introduced by Etherington (1939 , section 4) as special cases of baric algebras.

A special train algebra is a baric algebra in which the kernel N of the weight function is nilpotent and the principal powers of N are ideals. [1]

Etherington (1941) showed that special train algebras are train algebras.

Train algebras

Train algebras were introduced by Etherington (1939 , section 4) as special cases of baric algebras.

Let be elements of the field K with . The formal polynomial

is a train polynomial. The baric algebra B with weight w is a train algebra if

for all elements , with defined as principal powers, . [1] [6]

Zygotic algebras

Zygotic algebras were introduced by Etherington (1939 , section 7)

Related Research Articles

In mathematics, and more specifically in linear algebra, a linear map is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.

<span class="mw-page-title-main">Weyl group</span> Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which the map maps to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In mathematics, a Severi–Brauer variety over a field K is an algebraic variety V which becomes isomorphic to a projective space over an algebraic closure of K. The varieties are associated to central simple algebras in such a way that the algebra splits over K if and only if the variety has a rational point over K. Francesco Severi studied these varieties, and they are also named after Richard Brauer because of their close relation to the Brauer group.

In mathematics, a composition algebraA over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies

In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.

In mathematics, the Hilbert symbol or norm-residue symbol is a function from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers. It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.

In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity.

In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a nondegenerate positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions, and that there are no other possibilities. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.

In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.

In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group G without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character.

<span class="mw-page-title-main">Manin conjecture</span> Unsolved problem in number theory

In mathematics, the Manin conjecture describes the conjectural distribution of rational points on an algebraic variety relative to a suitable height function. It was proposed by Yuri I. Manin and his collaborators in 1989 when they initiated a program with the aim of describing the distribution of rational points on suitable algebraic varieties.

References

  1. 1 2 3 González, S.; Martínez, C. (2001), "About Bernstein algebras", in Granja, Ángel (ed.), Ring theory and algebraic geometry. Proceedings of the 5th international conference on algebra and algebraic geometry, SAGA V, León, Spain, Lect. Notes Pure Appl. Math., vol. 221, New York, NY: Marcel Dekker, pp. 223–239, Zbl   1005.17021
  2. Catalan, A. (2000). "E-ideals in Bernstein algebras". In Costa, Roberto (ed.). Nonassociative algebra and its applications. Proceedings of the fourth international conference, São Paulo, Brazil. Lect. Notes Pure Appl. Math. Vol. 211. New York, NY: Marcel Dekker. pp. 35–42. Zbl   0968.17013.
  3. Tian (2008) p.18
  4. Tian (2008) p.20
  5. Cohn, Paul M. (2000). Introduction to Ring Theory. Springer Undergraduate Mathematics Series. Springer-Verlag. p. 56. ISBN   1852332069. ISSN   1615-2085.
  6. Catalán S., Abdón (1994). "E-ideals in baric algebras". Mat. Contemp. 6: 7–12. Zbl   0868.17023.

Further reading