Glass melting furnace

Last updated
Glass Furnace by Siemens hist. 1878 Die Bauten von Dresden (1878) Illustrationsseite 245a.jpg
Glass Furnace by Siemens hist. 1878
Siemens Regenerator Furnace hist. 1885 in 4 Views Meyers b7 s0384a.jpg
Siemens Regenerator Furnace hist. 1885 in 4 Views

A glass melting furnace is designed to melt raw materials into glass. [1]

Contents

Depending on the intended use, there are various designs of glass melting furnaces available. [2] [3] [4] They use different power sources. These sources are mainly fossil fueled or by fully electric power. A combination of both energy sources is also realized. A glass melting furnace is made from a refractory material. [5]

Basics

The glass raw materials are fed to the glass melting tank in batches or continuously. The components (the batch) are melted to form a liquid glass melt. In addition to the basic components, the batch also contains cullet from recycled glass to save energy. The cullet content can be up to approx. 85% - 90% (green glass), depending on the requirements of the desired glass color. When changing the glass color (recoloring), the entire process often takes several days in large glass melting furnaces. For economical operation, the glass melting furnaces are operated around the clock throughout the year for so-called mass glass (hollow glass, flat glass). Apart from one to max. two smaller planned intermediate repairs, during which the furnace is taken out of operation, a so-called furnace journey (campaign) up to the general repair (rebuild) can last up to 16 years and more (depending on the product group). The capacity can range from about one ton to over 2000 tons and the daily throughput can range from a few kilograms to over 1000 tons. The operating temperature inside the furnace, above the so-called glass bath is about 1550 °C. This temperature is determined by the composition of the batch and by the required amount of molten glass - the daily production - as well as the design-related energy losses.

Glass furnaces are operated with a flue gas heat recovery system to increase the energy efficiency.

The reduction in CO2 emissions required, due to the climate change mitigation, has led to various concepts to reduce or replace the use of fossil fuels, as well as to avoid the CO2 released during the melting of the batch through an increased recycling content.

Day tanks

Pot Furnace (hist.) Fotothek df tg 0002219 Ofen ^ Schmelzofen ^ Glasofen ^ Kuhlofen ^ Mundloch ^ Glasschmelzwanne ^ Schmelz.jpg
Pot Furnace (hist.)
Pot Furnace (Reconstruction) Tscherniheim Waldglas Werkzeuge 2012 e.JPG
Pot Furnace (Reconstruction)
Pot Furnace - State of the Art Glasofen Leonardo.JPG
Pot Furnace - State of the Art

This historical type of glass melting tank produces in batches (discontinuously); it is used to melt glasses that are only required in small quantities. The maximum melting area of day tanks is 10 m2, and the melting capacity is between 0.4 and 0.8 t/m2 of melting area.

The pot furnace is one type of this. The furnace consists of a refractory masonry basin with a depth of 40 to 60 cm (bottom furnace), which is covered with a vault with a diameter of 70 to 80 cm (top furnace).

At the beginning of the 21st century, day tanks still existed in some mouth glass works and artisan workshops, as well as in some special glass manufacturers, where small quantities of high quality glass are melted, e.g. optical glass.

Day tanks are not taken out of service at the end of the day; the temperature is simply lowered overnight. Since the refractory material typically cannot tolerate large temperature changes and this leads to increased corrosion (consumption) of the same, such rapid cooling cannot occur anyway. If the day tank is taken out of operation, e.g. for maintenance, cooling/heating times (two to several days) must be observed which are adapted to the refractory material. Smaller furnaces (studio furnaces) in artisan studios are excepted. There, the refractory lining is designed accordingly.

Continuously operated glass melting furnaces

Continuously operated furnaces consist of two sections, the melting tank and the working tank. These are separated by a passage or a constriction (float glass). In the melting tank, the batch is melted and refined. The melt then passes through the passage into the working tank and from there into the feeder (forehearth). There the glass is removed. In hollow glass production (hollow glass), the glass machine below is fed with glass gobs. In flat glass production (float glass), the glass is fed at special wide outlets as a glass ribbon over a so-called float bath of liquid tin (for flat glass without structure : e.g. window glass, car glass) or for flat glass with structure over a profiled roller.

The melting tanks are made of refractory materials and consist of groups of alumina (Al2O3), silica (SiO2), magnesia (MgO), Zirconia (ZrO2) as well as combinations of them to produce the necessary refractory ceramic materials. When creating glass melting furnaces (melting tank including regenerative chambers), up to 2000 t of refractory material can be used for the hollow glass sector and up to 9000 t for the flat glass sector. The heat source in 2021 is typically natural gas, heavy and light oil, and electric current fed directly into the glass bath by means of electrodes. Fossil fuel heating is often combined with supplemental electric heating. Fully electrically heated glass melting tanks are also used.

Using pure oxygen instead of air to burn fossil fuels (preferably gas) saves energy and, in the best case, reduces operating costs. The combustion temperature, and therefore the heat transfer, is higher and the volume of gas to be heated is lower. However, oxygen-fired glass furnaces are usually not viable for the production of bulk glass, such as hollow and flat glass, due to the high cost of oxygen production. There are many different types of glass melting furnaces. The types of furnaces used in glass manufacturing include the so-called "end-fired", "side-fired" and "oxy-fuel" furnaces. The latest development is the hybrid furnace. A number of projects are currently under construction for this type and some are operational already in 2023. Typically, the size of a furnace is classified by its production capacity in metric tonnes per day (MTPD).

In order to save energy in the glass melting process, in addition to using as much recycled glass as possible (approx. 2% energy savings for every 10% cullet), the heating of the combustion air to a temperature level as high as possible by means of using a regenerative or a recuperator system is a fundamental part of the process.

Regenerator

In the most commonly used regenerator, the hot exhaust gases (1300 °C - 1400 °C) are fed discontinuously in chambers through a latticework of refractory, rectangular or special shaped bricks. This so-called lattice work is heated in the process. After this warm-up period (storage of the thermal energy of the exhaust gas by the lattice), the direction of the gas flow is reversed and the fresh, cold air required for combustion now flows through the previously heated lattice work of the chamber. The combustion air is thereby preheated to approx. 1200 °C - 1300 °C. This results in considerable energy savings. After combustion, the exhaust gases in turn enter the grating of another chamber, where they reheat the now more previously cooled grating. The process is repeated periodically at intervals of 20 to 30 minutes. The chambers are thus operated discontinuously. The degree of recovery is approx. 65%

Recuperator

A recuperator operates continuously and consist of a metallic heat exchanger between the exhaust gas and fresh air. Because of the metallic exchanger surface (heat-resistant high-alloy steel tubes in combination with a metallic double shell), a recuperator can only be operated at lower exhaust gas temperatures and therefore work less effectively (40%). Thus, only relatively lower preheating temperatures ( max. 800 °C) are achieved here.

A recuperator is less expensive to install and require less space and investment. This results in cost advantages in terms of investment costs, which are, however, considerably reduced by the lower effectiveness or can even have a negative impact for a long period of operation.

In the case of structural restrictions for the installation of a regenerator, a combinations of regenerator and recuperator have also been developed and implemented in order to achieve the most energy-saving or efficient operation of the system possible [6]

As a further measure, in order to utilize the heat content of the exhaust gas (temperature > 700 °C), a downstream heat/power coupling is technically possible or has already been tested on a large scale. However, the necessary maintenance effort of such a system is associated with considerable costs and is therefore to be evaluated as critical with regard to the associated operating costs. Therefore, this particular concept of downstream energy recovery is generally not pursued further at present. Innovative revisions of this concept must be tested in practice in the productive environment in the long term at great expense. However, this requires a certain willingness to take risks on the part of the companies, which, due to the fierce competition in this industry, is generally not taken.

Future development

Triggered by the climate debate, several developments and research projects have now been launched to significantly reduce the climate-damaging CO2 in production. Among other things, an initiative has been launched in Europe to establish a new type of glass melting furnace. [7] Various European glass manufacturers are working on this project together with technology suppliers with the aim of realizing a corresponding plant on an industrial scale. It is intended to put the plant into operation in 2022 with a melting capacity of 350 tons per day. This glass melting so called Hybrid-Furnace will be operated with 80% electricity generated from renewable energy sources and is expected to enable a reduction of CO2 by 50%. [8] [9]

The industry, a community of interest of 19 European container glass companies, tried to be supported financially by the EU Innovation Fund. [10] However this was not successful in being awarded a grant by the EU Innovation Fund, despite the project achieving very high evaluation scores in terms of innovation, sectoral approach and scalability.

Although the involved companies volunteered to contribute financially to the project, the EU grant was still representing a significant contribution to the additional CAPEX and OPEX compared to a conventional furnace. Without the EU grant, the project could not be pursued as initially planned. However, the industry is now evaluating how to proceed with their decarbonisation efforts. [11] End of year 2024 a project furnace was realized and went to commissioning. [12]

Furthermore, there are research projects to heat glass melting furnaces alternatively with so-called green hydrogen. The combustion of hydrogen only produces water vapor. However, the water vapor has an influence on the melting process and the glass composition as well as the properties of the glass produced. The way in which this influence can be controlled and corrected is the subject of further investigation. A large-scale industrial trial was successfully conducted in August 2021. [13]

Hydrogen, however, has a considerably lower calorific value per cubic meter compared to natural gas. This is only about one-third of that of natural gas. This results in new requirements for gas pipelines to transport hydrogen. The currently existing natural gas network is not easily designed for this. To provide the same amount of energy, the pipelines must either be approx. 70% larger or designed for a higher pressure, or a flow rate three times higher must be realized at the same pressure. The latter measure could be applied in existing pipeline networks. However, this can lead to increased vibrations, mainly caused by the existing installations in the pipeline, which promote the formation of cracks and thus trigger major damage events in the long term. It is known that under certain conditions, 100% hydrogen will embrittle the material at this point, accelerating deeper crack formation. However, an initially partial admixture of hydrogen to the natural gas is possible and has already been implemented. At present, a broad scientific discussion is being held on this, as well as by pipe suppliers.

The alternative use of biofuel was also tested in a large-scale industrial trial. A CO2 reduction of 80% was achieved. However, the required gas quantities were not fully available for a longer period of time, so that the large-scale test was limited to 4 days. [14]

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

<span class="mw-page-title-main">Steelmaking</span> Process for producing steel from iron ore and scrap

Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Fluidized bed combustion</span> Technology used to burn solid fuels

Fluidized bed combustion (FBC) is a combustion technology used to burn solid fuels.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Induction heating</span> Process of heating an electrically conducting object by electromagnetic induction

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Recuperator</span>

A recuperator is a special purpose counter-flow energy recovery heat exchanger positioned within the supply and exhaust air streams of an air handling system, or in the exhaust gases of an industrial process, in order to recover the waste heat. Generally, they are used to extract heat from the exhaust and use it to preheat air entering the combustion system. In this way they use waste energy to heat the air, offsetting some of the fuel, and thereby improve the energy efficiency of the system as a whole.

<span class="mw-page-title-main">Open hearth furnace</span> A type of industrial furnace for steelmaking

An open-hearth furnace or open hearth furnace is any of several kinds of industrial furnace in which excess carbon and other impurities are burnt out of pig iron to produce steel. Because steel is difficult to manufacture owing to its high melting point, normal fuels and furnaces were insufficient for mass production of steel, and the open-hearth type of furnace was one of several technologies developed in the nineteenth century to overcome this difficulty. Compared with the Bessemer process, which it displaced, its main advantages were that it did not expose the steel to excessive nitrogen, was easier to control, and permitted the melting and refining of large amounts of scrap iron and steel.

<span class="mw-page-title-main">Electric arc furnace</span> Type of furnace

An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc.

<span class="mw-page-title-main">Reverberatory furnace</span> Metallurgical furnace

A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term reverberation is used here in a generic sense of rebounding or reflecting, not in the acoustic sense of echoing.

<span class="mw-page-title-main">Air preheater</span> Device designed to heat air before another process

An air preheater is any device designed to heat air before another process (for example, combustion in a boiler With the primary objective of increasing the thermal efficiency of the process. They may be used alone or to replace a recuperative heat system or to replace a steam coil.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

An induction furnace is an electrical furnace in which the heat is applied by induction heating of metal. Induction furnace capacities range from less than one kilogram to one hundred tons, and are used to melt iron and steel, copper, aluminum, and precious metals.

<span class="mw-page-title-main">Oxy-fuel combustion process</span> Burning of fuel with pure oxygen

Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame. It has also received a lot of attention in recent decades as a potential carbon capture and storage technology.

<span class="mw-page-title-main">Crematorium</span> Machine or building in which cremation takes place

A crematorium or crematory is a venue for the cremation of the dead. Modern crematoria contain at least one cremator, a purpose-built furnace. In some countries a crematorium can also be a venue for open-air cremation. In many countries, crematoria contain facilities for funeral ceremonies, such as a chapel. Some crematoria also incorporate a columbarium, a place for interring cremation ashes.

A regenerative heat exchanger, or more commonly a regenerator, is a type of heat exchanger where heat from the hot fluid is intermittently stored in a thermal storage medium before it is transferred to the cold fluid. To accomplish this the hot fluid is brought into contact with the heat storage medium, then the fluid is displaced with the cold fluid, which absorbs the heat.

Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass.

A single-ended recuperative (SER) burner is a type of gas burner used in high-temperature industrial kilns and furnaces. These burners are used where indirect heating is required, e.g. where the products of combustion are not allowed to combine with the atmosphere of the furnace. The typical design is a tubular (pipe) shape with convoluted pathways on the interior, closed on the end pointed into the furnace. A gas burner fires a flame down the center of these pathways, and the hot combustion gases are then forced to change direction and travel along the shell of the tube, heating it to incandescent temperatures and allowing efficient transfer of thermal energy to the furnace interior. Exhaust gas is collected back at the burner end where it is eventually discharged to the atmosphere. The hot exhaust can be used to pre-heat the incoming combustion air and fuel gas (recuperation) to boost efficiency.

<span class="mw-page-title-main">Storage water heater</span> Thermodynamic device that uses energy to raise the temperature of water

A storage water heater, or a hot water system (HWS), is a domestic water heating appliance that uses a hot water storage tank to maximize water heating capacity and provide instantaneous delivery of hot water. Conventional storage water heaters use a variety of fuels, including natural gas, propane, fuel oil, and electricity. Less conventional water heating technologies, such as heat pump water heaters and solar water heaters, can also be categorized as storage water heaters.

<span class="mw-page-title-main">Metallurgical furnace</span> Device used to heat, melt, or otherwise process metals

A metallurgical furnace, often simply referred to as a furnace when the context is known, is an industrial furnace used to heat, melt, or otherwise process metals. Furnaces have been a central piece of equipment throughout the history of metallurgy; processing metals with heat is even its own engineering specialty known as pyrometallurgy.

References

  1. Code of Federal Regulations: 1949-1984. U.S. General Services Administration, National Archives and Records Service, Office of the Federal Register. 1982.
  2. "Melting furnaces & equipment".
  3. "Float glass furnaces".
  4. Orlov, D. L.; Baiburg, L. G.; Tokarev, V. D.; Ignatov, S. V.; Chubinidze, V. A. (1986-07-01). "Combined electric heating of glass in flat-glass furnaces". Glass and Ceramics. 43 (7): 285–288. doi:10.1007/BF00694861. ISSN   0361-7610. S2CID   136857250.
  5. Register, Office of the Federal (August 2010). Code of Federal Regulations, Title 40, Protection of Environment, PT. 61-62, Revised as of July 1, 2010. Government Printing Office. ISBN   9780160860300.
  6. "The new reality for Glass furnace enhanced heat recovery" (PDF).
  7. "A Fundamental Milestone Towards Climate-Neutral Glass Packaging".
  8. "A vision for climate neutral packaging".
  9. "The Furnaces for the Future: the glass industry's shared ambition for a low-carbon future".
  10. "The European Union Innovation Fund".
  11. "A Fundamental Milestone Towards Climate-Neutral Glass Packaging".
  12. "Ardagh Glass Packaging welcomes glass industry partners to NextGen Furnace launch event".
  13. "Architectural Glass Production Powered by Hydrogen in World First" (PDF).
  14. "Biofuel Trial by St Helens Glass Giant Marks New World-First Towards Decarbonisation".