Glucuronidation

Last updated

Glucuronidation is often involved in drug metabolism of substances such as drugs, pollutants, bilirubin, androgens, estrogens, mineralocorticoids, glucocorticoids, fatty acid derivatives, retinoids, and bile acids. These linkages involve glycosidic bonds. [1]

Contents

Mechanism

Glucuronidation consists of transfer of the glucuronic acid component of uridine diphosphate glucuronic acid to a substrate by any of several types of UDP-glucuronosyltransferase. UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) is an intermediate in the process and is formed in the liver. One example is the N-glucuronidation of an aromatic amine, 4-aminobiphenyl, by UGT1A4 or UGT1A9 from human, rat, or mouse liver. [2]

GlucuronidationBiphenylAmine.svg

The substances resulting from glucuronidation are known as glucuronides (or glucuronosides) and are typically much more water-soluble than the non-glucuronic acid-containing substances from which they were originally synthesised. The human body uses glucuronidation to make a large variety of substances more water-soluble, and, in this way, allow for their subsequent elimination from the body through urine or feces (via bile from the liver). Hormones are glucuronidated to allow for easier transport around the body. Pharmacologists have linked drugs to glucuronic acid to allow for more effective delivery of a broad range of potential therapeutics. Sometimes toxic substances are also less toxic after glucuronidation.

The conjugation of xenobiotic molecules with hydrophilic molecular species such as glucuronic acid is known as phase II metabolism.

Sites

Glucuronidation occurs mainly in the liver, although the enzyme responsible for its catalysis, UDP-glucuronyltransferase, has been found in all major body organs (e.g., intestine, kidneys, brain, adrenal gland, spleen, and thymus). [3] [4]

General influencing factors

Various factors affect the rate of glucuronidation, which in turn will affect these molecules' clearance from the body. Generally, an increased rate of glucuronidation results in a loss of potency for the target drugs or compounds.

FactorEffect on glucuronidation [5] Main drugs or compounds affected [5]
AgeInfant Chloramphenicol, morphine, paracetamol, bilirubin, steroids
Elderly↑ or unchangedNo change found for paracetamol, oxazepam, temazepam, or propranolol.
Decreased clearance found for codeine-6-glucuronide, and decreased unbound clearance for oxazepam in the very elderly.
SexFemalesClearance higher in males for paracetamol, oxazepam, temazepam, and propranolol. Possible additive role with CYP1A2 resulting in higher clozapine and olanzapine concentrations in females
Males
Body habitusOverweightClearance of lorazepam, oxazepam, temazepam, and paracetamol likely the result of an increase in liver size and quantity of enzyme
Underweight/malnourishedChloramphenicol, paracetamol
Disease statesFulminant hepatitis, cirrhosisZidovudine, oxazepam, lamotrigine
HypothyroidismOxazepam, paracetamol
HIVParacetamol
Tobacco smoking Propranolol, oxazepam, lorazepam, paracetamol. Possible additive role with CYP1A2 induction causing decreased clozapine and olanzapine concentration.

Affected drugs

Many drugs which are substrates for glucuronidation as part of their metabolism are significantly affected by inhibitors or inducers of their specific glucuronisyltransferase types:

SubstrateInhibitors of glucuronidation [5] Inducers of glucuronidation [5] [6]
Morphine
  • Amitriptyline
  • Clomipramine
  • Clonazepam
  • Diazepam
  • Flunitrazepam
  • Lorazepam
  • Nitrazepam
  • Oxazepam
  • Codeine
Oxazepam
  • Ethinylestradiol
  • Fenoprofen
  • Ibuprofen
  • Ketoprofen
  • Naproxen
  • Phenobarbitone
  • Phenytoin
Bilirubin
  • Phenobarbital
Paracetamol
  • Ethinylestradiol
  • Probenecid
  • Propranolol
Androsterone
  • Promethazine
  • Chlorpromazine
Carbamazepine-
10,11-transdiol
  • Valproic acid
Codeine
  • Amitriptyline
  • Diclofenac
Lamotrigine
  • Sertraline
  • Valproic acid
Lorazepam
  • Ethinylestradiol
  • Probenecid
  • Valproic acid
Temazepam
  • Probenecid
Testosterone
  • Amitriptyline
  • Chlorpromazine
  • Imipramine
  • Promethazine
Zidovudine
  • Probenecid
  • Valproic acid

Related Research Articles

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

<span class="mw-page-title-main">Gilbert's syndrome</span> Medical condition

Gilbert syndrome (GS) is a syndrome in which the liver of affected individuals processes bilirubin more slowly than the majority. Many people never have symptoms. Occasionally jaundice may occur.

<span class="mw-page-title-main">Glucuronide</span>

A glucuronide, also known as glucuronoside, is any substance produced by linking glucuronic acid to another substance via a glycosidic bond. The glucuronides belong to the glycosides.

<span class="mw-page-title-main">Enterohepatic circulation</span> Circulation of substances in the human digestive system

Enterohepatic circulation is the circulation of biliary acids, bilirubin, drugs or other substances from the liver to the bile, followed by entry into the small intestine, absorption by the enterocyte and transport back to the liver. Enterohepatic circulation is an especially important concept in the field of toxicology as many lipophilic xenobiotics undergo this process causing repeated liver damage.

<span class="mw-page-title-main">Glucuronic acid</span> Sugar acid

Glucuronic acid is a uronic acid that was first isolated from urine. It is found in many gums such as gum arabic, xanthan, and kombucha tea and is important for the metabolism of microorganisms, plants and animals.

<span class="mw-page-title-main">Crigler–Najjar syndrome</span> Rare inherited disorder affecting the metabolism of bilirubin

Crigler–Najjar syndrome is a rare inherited disorder affecting the metabolism of bilirubin, a chemical formed from the breakdown of the heme in red blood cells. The disorder results in a form of nonhemolytic jaundice, which results in high levels of unconjugated bilirubin and often leads to brain damage in infants. The disorder is inherited in an autosomal recessive manner. The annual incidence is estimated at 1 in 1,000,000.

<span class="mw-page-title-main">Glucuronosyltransferase</span> Class of enzymes

Uridine 5'-diphospho-glucuronosyltransferase is a microsomal glycosyltransferase that catalyzes the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. This is a glucuronidation reaction.

<span class="mw-page-title-main">UDP glucuronosyltransferase 1 family, polypeptide A1</span> Enzyme found in humans

UDP-glucuronosyltransferase 1-1 also known as UGT-1A is an enzyme that in humans is encoded by the UGT1A1 gene.

<span class="mw-page-title-main">UGT2B7</span> Protein-coding gene in the species Homo sapiens

UGT2B7 (UDP-Glucuronosyltransferase-2B7) is a phase II metabolism isoenzyme found to be active in the liver, kidneys, epithelial cells of the lower gastrointestinal tract and also has been reported in the brain. In humans, UDP-Glucuronosyltransferase-2B7 is encoded by the UGT2B7 gene.

<span class="mw-page-title-main">Uridine diphosphate glucose</span> Chemical compound

Uridine diphosphate glucose is a nucleotide sugar. It is involved in glycosyltransferase reactions in metabolism.

<span class="mw-page-title-main">UGT1A6</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 1-6 is an enzyme that in humans is encoded by the UGT1A6 gene.

<span class="mw-page-title-main">UGT1A10</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 1-10 is an enzyme that in humans is encoded by the UGT1A10 gene.

<span class="mw-page-title-main">UGT2B15</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 2B15 is an enzyme that in humans is encoded by the UGT2B15 gene.

<span class="mw-page-title-main">UGT1A3</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 1-3 is an enzyme that in humans is encoded by the UGT1A3 gene.

<span class="mw-page-title-main">UGT1A4</span> Enzyme and protein-coding gene in humans

UDP-glucuronosyltransferase 1-4 is an enzyme that in humans is encoded by the UGT1A4 gene.

<span class="mw-page-title-main">UGT2B4</span> Protein-coding gene in the species Homo sapiens

UDP glucuronosyltransferase 2 family, polypeptide B4, also known as UGT2B4, is an enzyme that in humans is encoded by the UGT2B4 gene.

<span class="mw-page-title-main">UGT2B17</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 2B17 is an enzyme that in humans is encoded by the UGT2B17 gene.

<span class="mw-page-title-main">Hyodeoxycholic acid</span> Chemical compound

Hyodeoxycholic acid, also known as 3α,6α-Dihydroxy-5β-cholan-24-oic acid or HDCA, is a secondary bile acid, one of the metabolic byproducts of intestinal bacteria. It differs from deoxycholic acid in that the 6α-hydroxyl is in the 12 position in the former. The 6α-hydroxyl group makes HDCA a hydrophilic acid, a property it shares with hyocholic acid. HDCA is present in mammalian species in different proportions. It is the main acid constituent of hog bile, and for this reason it was used industrially as precursor for steroid synthesis before total synthesis became practical.

<span class="mw-page-title-main">UGT1A9</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 1-9 is an enzyme that in humans is encoded by the UGT1A9 gene.

<span class="mw-page-title-main">Bilirubin glucuronide</span> Chemical compound

Bilirubin glucuronide is a water-soluble reaction intermediate over the process of conjugation of indirect bilirubin. Bilirubin glucuronide itself belongs to the category of conjugated bilirubin along with bilirubin di-glucuronide. However, only the latter one is primarily excreted into the bile in the normal setting.

References

  1. King C, Rios G, Green M, Tephly T (2000). "UDP-glucuronosyltransferases". Curr. Drug Metab. 1 (2): 143–61. doi:10.2174/1389200003339171. PMID   11465080.
  2. Al-Zoughool M., Talaska, G. (2006). "4-Aminobiphenyl N-glucuronidation by liver microsomes: optimization of the reaction conditions and characterization of the UDP-glucoronosyltransferase isoforms". J. Appl. Toxicol. 26 (6): 524–532. doi:10.1002/jat.1172. PMID   17080401. S2CID   19782863.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Ohno, Shuji; Nakajin, Shizuo (2008-10-06). "Determination of mRNA Expression of Human UDP-Glucuronosyltransferases and Application for Localization in Various Human Tissues by Real-Time Reverse Transcriptase-Polymerase Chain Reaction". Drug Metabolism and Disposition . 37 (1). American Society for Pharmacology and Experimental Therapeutics: 32–40. doi:10.1124/dmd.108.023598. PMID   18838504. S2CID   5150289 . Retrieved 2010-11-07.
  4. Bock K, Köhle C (2005). "UDP-glucuronosyltransferase 1A6: structural, functional, and regulatory aspects". Methods Enzymol. Methods in Enzymology. 400: 57–75. doi:10.1016/S0076-6879(05)00004-2. ISBN   9780121828059. PMID   16399343.
  5. 1 2 3 4 Unless else specified in boxes, then reference is: Liston, H.; Markowitz, J.; Devane, C. (2001). "Drug glucuronidation in clinical psychopharmacology". Journal of Clinical Psychopharmacology. 21 (5): 500–515. doi:10.1097/00004714-200110000-00008. PMID   11593076. S2CID   6068811.
  6. Neil B. Sandson, Drug-Drug Interaction Primer