Glucydur

Last updated

Glucydur is the trade name of a metal alloy with a low coefficient of thermal expansion, used for making balance wheels and other parts of mechanical watches. [1]

Glucydur is a beryllium bronze; an alloy of beryllium, copper and iron. In addition to its low coefficient of thermal expansion, its hardness (400 Brinell), nonmagnetizability, and resistance to deformation and damage make it suited for making precision parts that must have high dimensional stability. Glucydur is also resistant to corrosion; it is rather inert chemically. [2]

Glucydur was developed about the same time as another non-magnetic material, Nivarox.

Related Research Articles

Beryllium copper (BeCu), also known as copper beryllium (CuBe), beryllium bronze, and spring copper, is a copper alloy with 0.5–3% beryllium. Copper beryllium alloys are often used because of their high strength and good conductivity of both heat and electricity. It is used for its ductility, weldability in metalworking, and machining properties. It has many specialized applications in tools for hazardous environments, musical instruments, precision measurement devices, bullets, and some uses in the field of aerospace. Beryllium copper and other beryllium alloys are harmful carcinogens that present a toxic inhalation hazard during manufacturing.

<span class="mw-page-title-main">Invar</span> Alloy of nickel and iron with low coefficient of thermal expansion

Invar, also known generically as FeNi36, is a nickel–iron alloy notable for its uniquely low coefficient of thermal expansion. The name Invar comes from the word invariable, referring to its relative lack of expansion or contraction with temperature changes.

<span class="mw-page-title-main">Charles Édouard Guillaume</span>

Charles Édouard Guillaume was a Swiss physicist who received the Nobel Prize in Physics in 1920 in recognition of the service he had rendered to precision measurements in physics by his discovery of anomalies in nickel steel alloys. In 1919, he gave the fifth Guthrie Lecture at the Institute of Physics in London with the title "The Anomaly of the Nickel-Steels".

<span class="mw-page-title-main">Jewel bearing</span> Jewel-lined bearing used in precision instruments, particularly mechanical watches

A jewel bearing is a plain bearing in which a metal spindle turns in a jewel-lined pivot hole. The hole is typically shaped like a torus and is slightly larger than the shaft diameter. The jewels are typically made from the mineral corundum, usually either synthetic sapphire or synthetic ruby. Jewel bearings are used in precision instruments where low friction, long life, and dimensional accuracy are important. Their main use is in mechanical watches.

<span class="mw-page-title-main">Pocket watch</span> Watch made to be carried in a pocket

A pocket watch is a watch that is made to be carried in a pocket, as opposed to a wristwatch, which is strapped to the wrist.

<span class="mw-page-title-main">Movement (clockwork)</span> Mechanism of a watch or clock

In horology, a movement, also known as a caliber or calibre, is the mechanism of a watch or timepiece, as opposed to the case, which encloses and protects the movement, and the face, which displays the time. The term originated with mechanical timepieces, whose clockwork movements are made of many moving parts. The movement of a digital watch is more commonly known as a module.

<span class="mw-page-title-main">Mainspring</span> Spiral torsion spring of metal ribbon used as a power source in mechanical watches and clocks

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.

<span class="mw-page-title-main">Balance wheel</span>

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present. From its invention in the 14th century until tuning fork and quartz movements became available in the 1960s, virtually every portable timekeeping device used some form of balance wheel.

<span class="mw-page-title-main">Pallet fork</span>

The pallet fork is a component of the lever escapement of a mechanical watch. The pallet fork and the lever form one component that sits between the escape wheel and the balance wheel. Its purpose is to lock the escape wheel, and release it one tooth at a time at each swing of the balance wheel, and also give the balance wheel small pushes to keep it going.

<span class="mw-page-title-main">Thermal expansion</span> Tendency of matter to change volume in response to a change in temperature

Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.

Elinvar is a nickel–iron–chromium alloy notable for having a modulus of elasticity which does not change much with temperature changes. The name is a contraction of the French élasticité invariable. It was invented by Charles Édouard Guillaume, a Swiss physicist who also invented Invar, another alloy of nickel and iron with very low thermal expansion. Guillaume won the 1920 Nobel Prize in Physics for these discoveries, which shows how important these alloys were for scientific instruments.

<span class="mw-page-title-main">Balance spring</span>

A balance spring, or hairspring, is a spring attached to the balance wheel in mechanical timepieces. It causes the balance wheel to oscillate with a resonant frequency when the timepiece is running, which controls the speed at which the wheels of the timepiece turn, thus the rate of movement of the hands. A regulator lever is often fitted, which can be used to alter the free length of the spring and thereby adjust the rate of the timepiece.

<span class="mw-page-title-main">History of watches</span> Aspect of history

The history of watches began in 16th-century Europe, where watches evolved from portable spring-driven clocks, which first appeared in the 15th century.

Anti-magnetic (non-magnetic) watches are those that are able to run with minimal deviation when exposed to a certain level of magnetic field. The International Organization for Standardization issued a standard for magnetic-resistant watches, which many countries have adopted.

Nivarox, also known as Nivarox - FAR SA is a Swiss company formed by a merger in 1984 between Nivarox SA and Fabriques d'Assortiments Réunis (FAR). It is currently owned by the Swatch Group. Nivarox is also the trade name of the metallic alloy from which its products are fabricated. Its notable property is that its coefficient of elasticity is remarkably constant with temperature. Nivarox is most famous for producing hairsprings that are attached to the balance wheel inside a mechanical watch movement, as well as mainsprings which provide the motive power for the watch.

<span class="mw-page-title-main">Mechanical watch</span> Type of watch which uses a clockwork mechanism to measure the passage of time

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.

<span class="mw-page-title-main">Quartz clock</span> Clock type

Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds.

AlSiC, pronounced "alsick", is a metal matrix composite consisting of aluminium matrix with silicon carbide particles. It has high thermal conductivity, and its thermal expansion can be adjusted to match other materials, e.g. silicon and gallium arsenide chips and various ceramics. It is chiefly used in microelectronics as substrate for power semiconductor devices and high density multi-chip modules, where it aids with removal of waste heat.

E-Material, also called E Material, is a metal matrix composite consisting of beryllium matrix with beryllium oxide particles. It has high thermal conductivity, and its thermal expansion can be adjusted to match other materials, e.g. silicon and gallium arsenide chips and various ceramics. It is chiefly used in microelectronics as substrate for power semiconductor devices and high density multi-chip modules, where it aids with removal of waste heat. E-materials have low weight and high strength, making them especially suitable for aerospace technology. Their high elastic modulus is favorable for absorbing vibrations and lowering material fatigue of attached modules and wire bonds.

References

  1. "The Balance Wheel of a Watch - TimeZone". 2007-07-06. Archived from the original on 2007-07-06. Retrieved 2023-03-24.
  2. "Wrist Watches Explained : How to fully appreciate one of the most complex machine ever invented | WorldCat.org". www.worldcat.org. Retrieved 2023-03-24.