Hecke algebra

Last updated

In mathematics, the Hecke algebra is the algebra generated by Hecke operators, which are named after Erich Hecke.

Contents

Properties

The algebra is a commutative ring. [1] [2]

In the classical elliptic modular form theory, the Hecke operators Tn with n coprime to the level acting on the space of cusp forms of a given weight are self-adjoint with respect to the Petersson inner product. [3] Therefore, the spectral theorem implies that there is a basis of modular forms that are eigenfunctions for these Hecke operators. Each of these basic forms possesses an Euler product. More precisely, its Mellin transform is the Dirichlet series that has Euler products with the local factor for each prime p is the reciprocal of the Hecke polynomial, a quadratic polynomial in ps. [4] [5] In the case treated by Mordell, the space of cusp forms of weight 12 with respect to the full modular group is one-dimensional. It follows that the Ramanujan form has an Euler product and establishes the multiplicativity of τ(n). [6]

Generalizations

The classical Hecke algebra has been generalized to other settings, such as the Hecke algebra of a locally compact group and spherical Hecke algebra that arise when modular forms and other automorphic forms are viewed using adelic groups. [7]

See also

Notes

  1. Serre 1973 , Ch. VII, § 5. Corollary 2.
  2. Bump 1997 , Theorem 1.4.2, p. 45.
  3. Bump 1997 , Theorem 1.4.3, p. 46.
  4. Serre 1973 , Ch. VII, § 5. Corollary 3.
  5. Bump 1997 , §1.4, pp. 47–49.
  6. Bump 1997 , §1.4, p. 49.
  7. Bump 1997 , §2.2, p. 162.

Related Research Articles

The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

Gorō Shimura was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Erich Hecke, is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups.

In mathematics, the Ramanujan conjecture, due to Srinivasa Ramanujan (1916, p. 176), states that Ramanujan's tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

In mathematics, the Eisenstein ideal is an ideal in the endomorphism ring of the Jacobian variety of a modular curve, consisting roughly of elements of the Hecke algebra of Hecke operators that annihilate the Eisenstein series. It was introduced by Barry Mazur, in studying the rational points of modular curves. An Eisenstein prime is a prime in the support of the Eisenstein ideal.

<span class="mw-page-title-main">Modular elliptic curve</span>

A modular elliptic curve is an elliptic curve E that admits a parametrisation X0(N) → E by a modular curve. This is not the same as a modular curve that happens to be an elliptic curve, something that could be called an elliptic modular curve. The modularity theorem, also known as the Taniyama–Shimura conjecture, asserts that every elliptic curve defined over the rational numbers is modular.

<span class="mw-page-title-main">Representation theory</span> Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

In mathematics, the Rankin–Selberg method, introduced by and Selberg, also known as the theory of integral representations of L-functions, is a technique for directly constructing and analytically continuing several important examples of automorphic L-functions. Some authors reserve the term for a special type of integral representation, namely those that involve an Eisenstein series. It has been one of the most powerful techniques for studying the Langlands program.

In mathematics, the Hecke algebra of a pair (G, K) of locally compact or reductive Lie groups is an algebra of measures under convolution. It can also be defined for a pair (g,K) of a maximal compact subgroup K of a Lie group with Lie algebra g, in which case the Hecke algebra is an algebra with an approximate identity, whose approximately unital modules are the same as K-finite representations of the pairs (g,K).

<span class="mw-page-title-main">Sergei Evdokimov</span>

Sergei Alekseevich Evdokimov was a Russian mathematician who contributed to the theory of modular forms, computational complexity theory, algebraic combinatorics and p-adic analysis.

In mathematics, modular forms are particular complex analytic functions on the upper half-plane of interest in complex analysis and number theory. When reduced modulo a prime p, there is an analogous theory to the classical theory of complex modular forms and the p-adic theory of modular forms.

References