Heronian tetrahedron

Last updated

A Heronian tetrahedron [1] (also called a Heron tetrahedron [2] or perfect pyramid [3] ) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles (named for Hero of Alexandria). Every Heronian tetrahedron can be arranged in Euclidean space so that its vertex coordinates are also integers. [1]

Contents

Examples

An example known to Leonhard Euler is a Heronian birectangular tetrahedron, a tetrahedron with a path of three edges parallel to the three coordinate axes and with all faces being right triangles. The lengths of the edges on the path of axis-parallel edges are 153, 104, and 672, and the other three edge lengths are 185, 680, and 697, forming four right triangle faces described by the Pythagorean triples (153,104,185), (104,672,680), (153,680,697), and (185,672,697). [4]

Eight examples of Heronian tetrahedra were discovered in 1877 by Reinhold Hoppe. [5]

117 is the smallest possible length of the longest edge of a perfect tetrahedron with integral edge lengths. Its other edge lengths are 51, 52, 53, 80 and 84. [3] 8064 is the smallest possible volume (and 6384 is the smallest possible surface area) of a perfect tetrahedron. The integral edge lengths of a Heronian tetrahedron with this volume and surface area are 25, 39, 56, 120, 153 and 160. [6]

In 1943, E. P. Starke published another example, in which two faces are isosceles triangles with base 896 and sides 1073, and the other two faces are also isosceles with base 990 and the same sides. [7] However, Starke made an error in reporting its volume which has become widely copied. [2] The correct volume is 124185600, twice the number reported by Starke. [8]

Sascha Kurz has used computer search algorithms to find all Heronian tetrahedra with longest edge length at most 600000. [9]

Classification, infinite families, and special types of tetrahedron

A regular tetrahedron (one with all faces being equilateral) cannot be a Heronian tetrahedron because, for regular tetrahedra whose edge lengths are integers, the face areas and volume are irrational numbers. [10] For the same reason no Heronian tetrahedron can have an equilateral triangle as one of its faces. [3]

There are infinitely many Heronian tetrahedra, and more strongly infinitely many Heronian disphenoids, tetrahedra in which all faces are congruent and each pair of opposite sides has equal lengths. In this case, there are only three edge lengths needed to describe the tetrahedron, rather than six, and the triples of lengths that define Heronian tetrahedra can be characterized using an elliptic curve. [3] [11] There are also infinitely many Heronian tetrahedra with a cycle of four equal edge lengths, in which all faces are isosceles triangles. [2]

There are also infinitely many Heronian birectangular tetrahedra. One method for generating tetrahedra of this type derives the axis-parallel edge lengths , , and from two equal sums of fourth powers

using the formulas

For instance, the tetrahedron derived in this way from an identity of Leonhard Euler, , has , , and equal to 386678175, 332273368, and 379083360, with the hypotenuse of right triangle equal to 509828993, the hypotenuse of right triangle equal to 504093032, and the hypotenuse of the remaining two sides equal to 635318657. [8] For these tetrahedra, , , and form the edge lengths of an almost-perfect cuboid, a rectangular cuboid in which the sides, two of the three face diagonals, and the body diagonal are all integers. [4]

No example of a Heronian trirectangular tetrahedron had been found and no one has proven that none exist.

A complete classification of all Heronian tetrahedra remains unknown. [1] [2]

An alternative definition of Heronian triangles is that they can be formed by gluing together two integer right triangles along a common side. This definition has also been generalized to three dimensions, leading to a different class of tetrahedra that have also been called Heron tetrahedra. [12]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Golden ratio</span> Ratio between two quantities whose sum is at the same ratio to the larger one

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with ,

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Right triangle</span> When one angle is a 90-degree angle

A right triangle or right-angled triangle (British), or more formally an orthogonal triangle, formerly called a rectangled triangle, is a triangle in which one angle is a right angle, i.e., in which two sides are perpendicular. The relation between the sides and other angles of the right triangle is the basis for trigonometry.

<span class="mw-page-title-main">Heron's formula</span> Triangle area in terms of side lengths

In geometry, Heron's formula gives the area of a triangle in terms of the three side lengths a, b, c. If is the semiperimeter of the triangle, the area A is,

<span class="mw-page-title-main">Isosceles triangle</span> Triangle with at least two sides congruent

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

<span class="mw-page-title-main">Median (geometry)</span> Line segment joining a triangles vertex to the midpoint of the opposite side

In geometry, a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect each other at the triangle's centroid. In the case of isosceles and equilateral triangles, a median bisects any angle at a vertex whose two adjacent sides are equal in length. The concept of a median extends to tetrahedra.

In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime. A perfect Euler brick is one whose space diagonal is also an integer but such a brick has not yet been found.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

A two-dimensional equable shape is one whose area is numerically equal to its perimeter. For example, a right angled triangle with sides 5, 12 and 13 has area and perimeter both have a unitless numerical value of 30.

<span class="mw-page-title-main">Spiral of Theodorus</span> Polygonal curve made from right triangles

In geometry, the spiral of Theodorus is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyrene.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

<span class="mw-page-title-main">Automedian triangle</span>

In plane geometry, an automedian triangle is a triangle in which the lengths of the three medians are proportional to the lengths of the three sides, in a different order. The three medians of an automedian triangle may be translated to form the sides of a second triangle that is similar to the first one.

<span class="mw-page-title-main">Trirectangular tetrahedron</span> Tetrahedron where all three face angles at one vertex are right angles

In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle of the trirectangular tetrahedron and the face opposite it is called the base. The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron.

Pythagorean Triangles is a book on right triangles, the Pythagorean theorem, and Pythagorean triples. It was originally written in the Polish language by Wacław Sierpiński, and published in Warsaw in 1954. Indian mathematician Ambikeshwar Sharma translated it into English, with some added material from Sierpiński, and published it in the Scripta Mathematica Studies series of Yeshiva University in 1962. Dover Books republished the translation in a paperback edition in 2003. There is also a Russian translation of the 1954 edition.

References

  1. 1 2 3 Marshall, Susan H.; Perlis, Alexander R. (2013), "Heronian tetrahedra are lattice tetrahedra" (PDF), American Mathematical Monthly , 120 (2): 140–149, doi:10.4169/amer.math.monthly.120.02.140, MR   3029939, S2CID   15888158
  2. 1 2 3 4 Chisholm, C.; MacDougall, J. A. (2006), "Rational and Heron tetrahedra", Journal of Number Theory , 121 (1): 153–185, doi: 10.1016/j.jnt.2006.02.009 , MR   2268761
  3. 1 2 3 4 Buchholz, Ralph Heiner (1992), "Perfect pyramids" (PDF), Bulletin of the Australian Mathematical Society, 45 (3): 353–368, doi: 10.1017/S0004972700030252 , MR   1165142, archived from the original (PDF) on October 27, 2009
  4. 1 2 Gardner, Martin (1983), "Chapter 2: Diophantine Analysis and Fermat's Last Theorem", Wheels, Life and Other Mathematical Amusements , W. H. Freeman, pp. 10–19, Bibcode:1983wlom.book.....G ; see in particular page 14
  5. Hoppe, R. (1877), "Über rationale Dreikante und Tetraeder", Archiv der Mathematik und Physik, 61: 86–98, as cited by Chisholm & MacDougall (2006)
  6. Peterson, Ivars (July 2003), "Math Trek: Perfect Pyramids", Science News , archived from the original on February 20, 2008
  7. Starke, E. P. (June–July 1943), "E 544: A commensurable tetrahedron", Problems and solutions, The American Mathematical Monthly, 50 (6): 390, doi:10.2307/2303724, JSTOR   2303724
  8. 1 2 "Problem 930" (PDF), Solutions, Crux Mathematicorum, 11 (5): 162–166, May 1985
  9. Kurz, Sascha (2008), "On the generation of Heronian triangles", Serdica Journal of Computing, 2 (2): 181–196, arXiv: 1401.6150 , MR   2473583
  10. Coxeter, H. S. M. (1973), Regular Polytopes (3rd ed.), Dover, Table I(i), pp. 292–293
  11. Güntsche, R. (1907), "Rationale Tetraeder mit kongruenten Seiten", Sitzungsberichte der Berliner Mathematische Gesellschaft, 6: 38–53, as cited by Chisholm & MacDougall (2006)
  12. Lin, C.-S. (November 2011), "95.66 The reciprocal volume of a Heron tetrahedron", The Mathematical Gazette , 95 (534): 542–545, doi:10.1017/S0025557200003740, JSTOR   23248533 (about a different concept with the same name)