Hexagonal bipyramid

Last updated
Hexagonal bipyramid
Hexagonale bipiramide.png
Type bipyramid
Faces 12 triangles
Vertices 8
Vertex configuration V4.4.6
Schläfli symbol { } + {6}
Coxeter diagram CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 6.pngCDel node.png
CDel node f1.pngCDel 2x.pngCDel node f1.pngCDel 3.pngCDel node f1.png
Symmetry group D6h, [6,2], (*226), order 24
Rotation group D6, [6,2]+, (226), order 12
Dual polyhedron hexagonal prism
Properties convex, face-transitive

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

Contents

Although it is face-transitive, it is not a Platonic solid because some vertices have four faces meeting and others have six faces, and it is not a Johnson solid because its faces cannot be equilateral triangles; 6 equilateral triangles would make a flat vertex.

It is one of an infinite set of bipyramids. Having twelve faces, it is a type of dodecahedron, although that name is usually associated with the regular polyhedral form with pentagonal faces.

The hexagonal bipyramid has a plane of symmetry (which is horizontal in the figure to the right) where the bases of the two pyramids are joined. This plane is a regular hexagon. There are also six planes of symmetry crossing through the two apices. These planes are rhombic and lie at 30° angles to each other, perpendicular to the horizontal plane.

Images

It can be drawn as a tiling on a sphere which also represents the fundamental domains of [3,2], *322 dihedral symmetry:

Spherical hexagonal bipyramid.svg

The hexagonal bipyramid, dt{2,6}, can be in sequence truncated, tdt{2,6} and alternated (snubbed), sdt{2,6}:

Snub hexagonal bipyramid sequence.png

The hexagonal bipyramid, dt{2,6}, can be in sequence rectified, rdt{2,6}, truncated, trdt{2,6} and alternated (snubbed), srdt{2,6}:

Snub rectified hexagonal bipyramid sequence.png
Uniform hexagonal dihedral spherical polyhedra
Symmetry: [6,2], (*622)[6,2]+, (622)[6,2+], (2*3)
Hexagonal dihedron.png Dodecagonal dihedron.png Hexagonal dihedron.png Spherical hexagonal prism.png Spherical hexagonal hosohedron.svg Spherical truncated trigonal prism.png Spherical dodecagonal prism2.png Spherical hexagonal antiprism.png Spherical trigonal antiprism.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
{6,2} t{6,2} r{6,2} t{2,6} {2,6} rr{6,2} tr{6,2} sr{6,2} s{2,6}
Duals to uniforms
Spherical hexagonal hosohedron.svg Spherical dodecagonal hosohedron.svg Spherical hexagonal hosohedron.svg Spherical hexagonal bipyramid.svg Hexagonal dihedron.png Spherical hexagonal bipyramid.svg Spherical dodecagonal bipyramid.svg Spherical hexagonal trapezohedron.png Spherical trigonal trapezohedron.png
V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V3.3.3.3

It is the first polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb.Paraco.Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6. 4.6.24i4.6.18i4.6.12i4.6.6i
Duals Spherical hexagonal bipyramid.svg Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.V4.6.24iV4.6.18iV4.6.12iV4.6.6i
"Regular" right (symmetric) n-gonal bipyramids:
Bipyramid nameDigonal bipyramid Triangular bipyramid
(See: J12)
Square bipyramid
(See: O)
Pentagonal bipyramid
(See: J13)
Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png ...
Spherical tiling image Spherical digonal bipyramid.svg Spherical trigonal bipyramid.svg Spherical square bipyramid.svg Spherical pentagonal bipyramid.svg Spherical hexagonal bipyramid.svg Spherical heptagonal bipyramid.svg Spherical octagonal bipyramid.svg Spherical enneagonal bipyramid.svg Spherical decagonal bipyramid.svg Plane tiling image Infinite bipyramid.svg
Face config. V2.4.4V3.4.4V4.4.4V5.4.4V6.4.4V7.4.4V8.4.4V9.4.4V10.4.4...V∞.4.4
Coxeter diagram CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2x.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.pngCDel node f1.pngCDel 2.pngCDel node f1.pngCDel 10.pngCDel node.png...CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png

See also

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Truncated octahedron</span> Archimedean solid

In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces, 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6-zonohedron. It is also the Goldberg polyhedron GIV(1,1), containing square and hexagonal faces. Like the cube, it can tessellate 3-dimensional space, as a permutohedron.

<span class="mw-page-title-main">Truncated cuboctahedron</span> Archimedean solid in geometry

In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry, the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

<span class="mw-page-title-main">Tetrakis hexahedron</span> Catalan solid with 24 faces

In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is oblique. A uniform triangular prism is a right triangular prism with equilateral bases, and square sides.

<span class="mw-page-title-main">Hexagonal prism</span> Prism with a 6-sided base

In geometry, the hexagonal prism is a prism with hexagonal base. Prisms are polyhedrons; this polyhedron has 8 faces, 18 edges, and 12 vertices.

<span class="mw-page-title-main">Square antiprism</span>

In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

In geometry, a near-miss Johnson solid is a strictly convex polyhedron whose faces are close to being regular polygons but some or all of which are not precisely regular. Thus, it fails to meet the definition of a Johnson solid, a polyhedron whose faces are all regular, though it "can often be physically constructed without noticing the discrepancy" between its regular and irregular faces. The precise number of near-misses depends on how closely the faces of such a polyhedron are required to approximate regular polygons.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".