Homoeoid

Last updated
Cut view of a homoeoid in 3D Homoeoid3d.jpg
Cut view of a homoeoid in 3D

A homoeoid is a shell (a bounded region) bounded by two concentric, similar ellipses (in 2D) or ellipsoids (in 3D). [1] [2] When the thickness of the shell becomes negligible, it is called a thin homoeoid. The name homoeoid was coined by Lord Kelvin and Peter Tait. [3]

Contents

Mathematical definition

If the outer shell is given by

with semiaxes the inner shell is given for by

.

The thin homoeoid is then given by the limit

Physical meaning

A homoeoid can be used as a construction element of a matter or charge distribution. The gravitational or electromagnetic potential of a homoeoid homogeneously filled with matter or charge is constant inside the shell. This means that a test mass or charge will not feel any force inside the shell. [4]

See also

Related Research Articles

Lorentz force Force acting on charged particles in electric and magnetic fields

In physics the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

<i>p</i>-adic number Number system for a prime p which extends the rationals, defining closeness differently

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

Ellipsoid Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

Gravitational potential Fundamental study of potential theory

In classical mechanics, the gravitational potential at a location is equal to the work per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.

In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form

In statistics, a confidence region is a multi-dimensional generalization of a confidence interval. It is a set of points in an n-dimensional space, often represented as an ellipsoid around a point which is an estimated solution to a problem, although other shapes can occur.

In complex analysis, the Phragmén–Lindelöf principle, first formulated by Lars Edvard Phragmén (1863–1937) and Ernst Leonard Lindelöf (1870–1946) in 1908, is a technique which employs an auxiliary, parameterized function to prove the boundedness of a holomorphic function on an unbounded domain when an additional condition constraining the growth of on is given. It is a generalization of the maximum modulus principle, which is only applicable to bounded domains.

Multiple integral Generalization of definite integrals to functions of multiple variables

In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

In mathematics, Lindelöf's theorem is a result in complex analysis named after the Finnish mathematician Ernst Leonard Lindelöf. It states that a holomorphic function on a half-strip in the complex plane that is bounded on the boundary of the strip and does not grow "too fast" in the unbounded direction of the strip must remain bounded on the whole strip. The result is useful in the study of the Riemann zeta function, and is a special case of the Phragmén–Lindelöf principle. Also, see Hadamard three-lines theorem.

Z-channel (information theory)

In coding theory and information theory, a Z-channel is a communications channel used to model the behaviour of some data storage systems.

In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator

In computational learning theory, Rademacher complexity, named after Hans Rademacher, measures richness of a class of real-valued functions with respect to a probability distribution.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Superellipsoid Family of geometric shapes

In mathematics, a superellipsoid is a solid whose horizontal sections are superellipses with the same exponent r, and whose vertical sections through the center are superellipses with the same exponent t.

Poisson distribution Discrete probability distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area or volume.

Focaloid

In geometry, a focaloid is a shell bounded by two concentric, confocal ellipses or ellipsoids (in 3D). When the thickness of the shell becomes negligible, it is called a thin focaloid.

Grunsky matrix

In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

References

  1. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, Yale Univ. Press. London (1969)
  2. Routh, E. J.: A Treatise on Analytical Statics, Vol II, Cambridge University Press, Cambridge (1882)
  3. Harry Bateman. "Partial differential equations of mathematical physics.", Cambridge, UK: Cambridge University Press, 1932 (1932).
  4. Michel Chasles, Solution nouvelle du problème de l’attraction d’un ellipsoïde hétérogène sur un point exterieur, Jour. Liouville 5, 465–488 (1840)