Hunter Lab

Last updated

Hunter Lab (also known as Hunter L,a,b) is a color space defined in 1948 [1] [2] by Richard S. Hunter. It was designed to be computed via simple formulas from the CIEXYZ space, but to be more perceptually uniform. Hunter named his coordinates L, a and b. Hunter Lab was a precursor to CIELAB, created in 1976 by the International Commission on Illumination (CIE), which named the coordinates for CIELAB as L*, a*, b* to distinguish them from Hunter's coordinates. [3] [4]

Contents

Formulation

L is a correlate of lightness and is computed from the Y tristimulus value using Priest's approximation to Munsell value:

where Yn is the Y tristimulus value of a specified white object. For surface-color applications, the specified white object is usually (though not always) a hypothetical material with unit reflectance that follows Lambert's law. The resulting L will be scaled between 0 (black) and 100 (white); roughly ten times the Munsell value. Note that a medium lightness of 50 is produced by a luminance of 25, due to the square root proportionality.

a and b are termed opponent color axes. a represents, roughly, Redness (positive) versus Greenness (negative). It is computed as:

where Ka is a coefficient that depends upon the illuminant (for D65, Ka is 172.30; see approximate formula below) and Xn is the X tristimulus value of the specified white object.

The other opponent color axis, b, is positive for yellow colors and negative for blue colors. It is computed as:

where Kb is a coefficient that depends upon the illuminant (for D65, Kb is 67.20; see approximate formula below) and Zn is the Z tristimulus value of the specified white object. [5]

Both a and b will be zero for objects that have the same chromaticity coordinates as the specified white objects (i.e., achromatic, grey, objects).

Approximate formulas for Ka and Kb

In the previous version of the Hunter Lab color space, Ka was 175 and Kb was 70. Hunter Associates Lab discovered[ citation needed ] that better agreement could be obtained with other color difference metrics, such as CIELAB (see above) by allowing these coefficients to depend upon the illuminants. Approximate formulae are:

which result in the original values for Illuminant C, the original illuminant with which the Lab color space was used.

As an Adams chromatic valence space

Adams chromatic valence color spaces are based on two elements: a (relatively) uniform lightness scale and a (relatively) uniform chromaticity scale. [6] If we take as the uniform lightness scale Priest's approximation to the Munsell Value scale, which would be written in modern notation as:

and, as the uniform chromaticity coordinates:

where ke is a tuning coefficient, we obtain the two chromatic axes:

and

which is identical to the Hunter Lab formulas given above if we select K = Ka/100 and ke = Kb/Ka. Therefore, the Hunter Lab color space is an Adams chromatic valence color space.

Related Research Articles

<span class="mw-page-title-main">Hue</span> Property of a color indicating balance of color perceived by the normal human eye

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are alternative representations of the RGB color model, designed in the 1970s by computer graphics researchers to more closely align with the way human vision perceives color-making attributes. In these models, colors of each hue are arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom to white at the top.

<span class="mw-page-title-main">CIELAB color space</span> Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

<span class="mw-page-title-main">Adobe RGB color space</span> Color space developed by Adobe

The Adobe RGB (1998) color space or opRGB is a color space developed by Adobe Inc. in 1998. It was designed to encompass most of the colors achievable on CMYK color printers, but by using RGB primary colors on a device such as a computer display. The Adobe RGB (1998) color space encompasses roughly 50% of the visible colors specified by the CIELAB color space – improving upon the gamut of the sRGB color space, primarily in cyan-green hues. It was subsequently standardized by the IEC as IEC 61966-2-5:1999 with a name opRGB and is used in HDMI.

<span class="mw-page-title-main">Color rendering index</span> Measure of ability of a light source to reproduce colors in comparison with a standard light source

A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source. Light sources with a high CRI are desirable in color-critical applications such as neonatal care and art restoration.

<span class="mw-page-title-main">Color balance</span> Adjustment of color intensities in photography

In photography and image processing, color balance is the global adjustment of the intensities of the colors. An important goal of this adjustment is to render specific colors – particularly neutral colors like white or grey – correctly. Hence, the general method is sometimes called gray balance, neutral balance, or white balance. Color balance changes the overall mixture of colors in an image and is used for color correction. Generalized versions of color balance are used to correct colors other than neutrals or to deliberately change them for effect. White balance is one of the most common kinds of balancing, and is when colors are adjusted to make a white object appear white and not a shade of any other colour.

<span class="mw-page-title-main">Planckian locus</span> Locus of colors of incandescent black bodies within a color space

In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes. It goes from deep red at low temperatures through orange, yellowish white, white, and finally bluish white at very high temperatures.

<span class="mw-page-title-main">Correlated color temperature</span>

The correlated color temperature is defined as "the temperature of the Planckian radiator whose perceived color most closely resembles that of a given stimulus at the same brightness and under specified viewing conditions

The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that define these color spaces are essential tools for color management, important when dealing with color inks, illuminated displays, and recording devices such as digital cameras. The system was designed in 1931 by the "Commission Internationale de l'éclairage", known in English as the International Commission on Illumination.

<span class="mw-page-title-main">Illuminant D65</span> Standard illuminant defined by the International Commission on Illumination

CIE standard illuminant D65 (sometimes written D65) is a commonly used standard illuminant defined by the International Commission on Illumination (CIE). It is part of the D series of illuminants that try to portray standard illumination conditions at open-air in different parts of the world.

<span class="mw-page-title-main">Standard illuminant</span> Theoretical source of visible light

A standard illuminant is a theoretical source of visible light with a spectral power distribution that is published. Standard illuminants provide a basis for comparing images or colors recorded under different lighting.

Adams chromatic valence color spaces are a class of color spaces suggested by Elliot Quincy Adams. Two important Adams chromatic valence spaces are CIELUV and Hunter Lab.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIECAM02</span>

In colorimetry, CIECAM02 is the color appearance model published in 2002 by the International Commission on Illumination (CIE) Technical Committee 8-01 and the successor of CIECAM97s.

<span class="mw-page-title-main">CIE 1960 color space</span>

The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.

The CIE 1964 (U*, V*, W*) color space, also known as CIEUVW, is based on the CIE 1960 UCS:

In colorimetry the OSA-UCS is a color space first published in 1947 and developed by the Optical Society of America’s Committee on Uniform Color Scales. Previously created color order systems, such as the Munsell color system, failed to represent perceptual uniformity in all directions. The committee decided that, in order to accurately represent uniform color differences in each direction, a new shape of three dimensional Cartesian geometry would need to be used.

A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.

References

  1. Hunter, Richard Sewall (July 1948). "Photoelectric Color-Difference Meter". JOSA . 38 (7): 661. (Proceedings of the Winter Meeting of the Optical Society of America)
  2. Hunter, Richard Sewall (December 1948). "Accuracy, Precision and Stability of New Photo-electric Color-Difference Meter". JOSA . 38 (12): 1094. (Proceedings of the Thirty-Third Annual Meeting of the Optical Society of America)
  3. Hunter, Richard Sewall (July 1948). "Photoelectric Color-Difference Meter". JOSA . 38 (7): 661. (Proceedings of the Winter Meeting of the Optical Society of America)
  4. Hunter, Richard Sewall (December 1948). "Accuracy, Precision, and Stability of New Photo-electric Color-Difference Meter". JOSA . 38 (12): 1094. (Proceedings of the Thirty-Third Annual Meeting of the Optical Society of America)
  5. Hunter Labs (1996). "Hunter Lab Color Scale". Insight on Color8 9 (August 1–15, 1996). Reston, VA, USA: Hunter Associates Laboratories.
  6. Adams, E.Q. (1942). "X-Z planes in the 1931 I.C.I. system of colorimetry". JOSA . 32 (3): 168–173. Bibcode:1942JOSA...32..168A. doi:10.1364/JOSA.32.000168.