Hunter process

Last updated

The Hunter process was the first industrial process to produce pure ductile metallic titanium. It was invented in 1910 by Matthew A. Hunter, a chemist born in New Zealand who worked in the United States. [1] The process involves reducing titanium tetrachloride (TiCl4) with sodium (Na) in a batch reactor with an inert atmosphere at a temperature of 1,000 °C. Dilute hydrochloric acid is then used to leach the salt from the product. [2]

TiCl4(g) + 4 Na(l) → 4 NaCl(l) + Ti(s)

Prior to the Hunter process, all efforts to produce Ti metal afforded highly impure material, often titanium nitride (which resembles a metal). The Hunter process was used up until 1993 when it was replaced by the more economical Kroll process which was developed in the 1940s. In the Kroll process, TiCl4 is reduced by magnesium as opposed to sodium however both methods share the same steps to obtaining TiCl4 and today the Kroll process is among the most commonly used titanium smelting processes. [3]

The Hunter process was conducted in either one or two steps. If a single step was used the reaction equation is as above, however, due to the larger amount of heat generated by the reduction using sodium as opposed to magnesium and the difficulty in controlling the vapor pressure of liquid sodium a two step process may instead be used. The two step processes consisted of reducing TiCl4 to TiCl2 with half the stoichiometric amount of sodium required to reduce TiCl4 to Ti. Next the TiCl2 in molten sodium chloride is transferred to a different container with the additional sodium required to form Ti. The two step processes proceeded according to the following two reactions:

TiCl4(g) + 2Na(l) → TiCl2(l, in NaCl) + 2NaCl(l)

TiCl2(l, in NaCl) + 2Na(l) → Ti(s) + 2NaCl(l)

Compared with the Kroll process the titanium produced by the Hunter process adheres to the reduction container walls less. Also the contamination by iron and other elements is also relatively low. The titanium produced by the Hunter process is in the form of powder called sponge fines. This form is useful and is an inexpensive raw material in powder metallurgy.

The main limiting factor for the usefulness of the Hunter process is the difficulty of separating the produced NaCl from the titanium. The vapor pressure of NaCl produced in the Hunter process is lower than the vapor pressure of MgCl2 which is produced by the Kroll process. Thus it is difficult to separate the NaCl from the titanium using distillation in an efficient manner. Therefore, the NaCl is removed by leaching in an aqueous solution. Recovering the byproduct (NaCl) from this aqueous solution is a process that requires additional energy. These issues motivated the discontinuation of the Hunter process in industry in 1993, however, R&D into sodium reduction continues to this day due to the superior form and purity of the metal deposit produced when compared with the Kroll process. [4]

Related Research Articles

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. Silanes are commonly used to apply coatings to surfaces or as an adhesion promoter.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as “tickle” or “tickle 4”, as a phonetic representation of the symbols of its molecular formula.

The chloralkali process is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide, which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.

<span class="mw-page-title-main">Titanium diboride</span> Chemical compound

Titanium diboride (TiB2) is an extremely hard ceramic which has excellent heat conductivity, oxidation stability and wear resistance. TiB2 is also a reasonable electrical conductor, so it can be used as a cathode material in aluminium smelting and can be shaped by electrical discharge machining.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Single displacement reaction</span> Type of chemical reaction

A single-displacement reaction, also known as single replacement reaction or exchange reaction, is a chemical reaction in which one element is replaced by another in a compound.

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

<span class="mw-page-title-main">Hafnium tetrachloride</span> Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

<span class="mw-page-title-main">McMurry reaction</span>

The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry. The McMurry reaction originally involved the use of a mixture TiCl3 and LiAlH4, which produces the active reagents. Related species have been developed involving the combination of TiCl3 or TiCl4 with various other reducing agents, including potassium, zinc, and magnesium. This reaction is related to the Pinacol coupling reaction which also proceeds by reductive coupling of carbonyl compounds.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

<span class="mw-page-title-main">Titanium(II) chloride</span> Chemical compound

Titanium(II) chloride is the chemical compound with the formula TiCl2. The black solid has been studied only moderately, probably because of its high reactivity. Ti(II) is a strong reducing agent: it has a high affinity for oxygen and reacts irreversibly with water to produce H2. The usual preparation is the thermal disproportionation of TiCl3 at 500 °C. The reaction is driven by the loss of volatile TiCl4:

<span class="mw-page-title-main">Downs cell</span>

Downs' process is an electrochemical method for the commercial preparation of metallic sodium, in which molten NaCl is electrolyzed in a special apparatus called the Downs cell. The Downs cell was invented in 1923 by the American chemist James Cloyd Downs (1885–1957).

<span class="mw-page-title-main">Chloroauric acid</span> Chemical compound

Chloroauric acid is an inorganic compound with the chemical formula H[AuCl4]. It forms hydrates H[AuCl4nH2O. Both the trihydrate and tetrahydrate are known. Both are orange-yellow solids consisting of the planar [AuCl4] anion. Often chloroauric acid is handled as a solution, such as those obtained by dissolution of gold in aqua regia. These solutions can be converted to other gold complexes or reduced to metallic gold or gold nanoparticles.

In organometallic chemistry, bent metallocenes are a subset of metallocenes. In bent metallocenes, the ring systems coordinated to the metal are not parallel, but are tilted at an angle. A common example of a bent metallocene is Cp2TiCl2. Several reagents and much research is based on bent metallocenes.

The Hydrogen Assisted Magnesiothermic Reduction ("HAMR") process is a thermochemical process to obtain titanium metal from titanium oxides..

References

  1. M. A. Hunter "Metallic Titanium" J. Am. Chem. Soc. 1910, pp 330–336. doi : 10.1021/ja01921a006
  2. Schaschke, Carl (2014). "Hunter process". A Dictionary of Chemical Engineering . Oxford University Press. doi:10.1093/acref/9780199651450.001.0001. ISBN   978-0-19-965145-0.
  3. Heinz Sibum; Volker Günther; Oskar Roidl; Fathi Habashi; Hans Uwe Wolf (2005). "Titanium, Titanium Alloys, and Titanium Compounds". Titanium, Titanium Alloys, and Titanium Compounds. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a27_095. ISBN   3527306730.
  4. Takeda, Osamu; Uda, Tetsuya; Okabe, Toru H. (2014). "Chapter 2.9 - Rare Earth, Titanium Group Metals, and Reactive Metals Production". In Seetharaman, Seshadri (ed.). Treatise on Process Metallurgy. Vol. 3. Boston: Elsevier. pp. 1028–1029. doi:10.1016/B978-0-08-096988-6.00019-5. ISBN   978-0-08-096988-6.