Hyperoctahedral group

Last updated
C2 group circle domains.png
The C2 group has order 8 as shown on this circle
Sphere symmetry group oh.png
The C3 (Oh) group has order 48 as shown by these spherical triangle reflection domains.

In mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube.

Contents

As a Coxeter group it is of type Bn = Cn, and as a Weyl group it is associated to the symplectic groups and with the orthogonal groups in odd dimensions. As a wreath product it is where Sn is the symmetric group of degree n. As a permutation group, the group is the signed symmetric group of permutations π either of the set or of the set such that for all i. As a matrix group, it can be described as the group of n × n orthogonal matrices whose entries are all integers. Equivalently, this is the set of n × n matrices with entries only 0, 1, or –1, which are invertible, and which have exactly one non-zero entry in each row or column. The representation theory of the hyperoctahedral group was described by ( Young 1930 ) according to ( Kerber 1971 , p. 2).

In three dimensions, the hyperoctahedral group is known as O × S2 where OS4 is the octahedral group, and S2 is a symmetric group (here a cyclic group) of order 2. Geometric figures in three dimensions with this symmetry group are said to have octahedral symmetry, named after the regular octahedron, or 3-orthoplex. In 4-dimensions it is called a hexadecachoric symmetry, after the regular 16-cell, or 4-orthoplex. In two dimensions, the hyperoctahedral group structure is the abstract dihedral group of order eight, describing the symmetry of a square, or 2-orthoplex.

By dimension

The 8 permutations of the square, forming D4 Hyperoctahedral group 2; passive prefix.svg
The 8 permutations of the square, forming D4
8 of the 48 permutations of a cube, forming Oh 3-ary Boolean functions; cube permutations; 5.svg
8 of the 48 permutations of a cube, forming Oh

Hyperoctahedral groups can be named as Bn, a bracket notation, or as a Coxeter group graph:

nSymmetry
group
Bn Coxeter notation Order MirrorsStructureRelated regular polytopes
2 D4 (*4•)B2[4]CDel node.pngCDel 4.pngCDel node.png222! = 84 Square, octagon
3 Oh (*432)B3[4,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png233! = 48 3+6 Cube, octahedron
4±1/6[OxO].2 [1]
(O/V;O/V)* [2]
B4[4,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png244! = 384 4+12 Tesseract, 16-cell, 24-cell
5 B5[4,3,3,3]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png255! = 38405+20 5-cube, 5-orthoplex
6 B6[4,34]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png266! = 460806+30 6-cube, 6-orthoplex
...n Bn[4,3n-2]CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png2nn! =  (2n)!! n2 hypercube, orthoplex

Subgroups

There is a notable index two subgroup, corresponding to the Coxeter group Dn and the symmetries of the demihypercube. Viewed as a wreath product, there are two natural maps from the hyperoctahedral group to the cyclic group of order 2: one map coming from "multiply the signs of all the elements" (in the n copies of ), and one map coming from the parity of the permutation. Multiplying these together yields a third map . The kernel of the first map is the Coxeter group In terms of signed permutations, thought of as matrices, this third map is simply the determinant, while the first two correspond to "multiplying the non-zero entries" and "parity of the underlying (unsigned) permutation", which are not generally meaningful for matrices, but are in the case due to the coincidence with a wreath product.

The kernels of these three maps are all three index two subgroups of the hyperoctahedral group, as discussed in H1: Abelianization below, and their intersection is the derived subgroup, of index 4 (quotient the Klein 4-group), which corresponds to the rotational symmetries of the demihypercube.

In the other direction, the center is the subgroup of scalar matrices, {±1}; geometrically, quotienting out by this corresponds to passing to the projective orthogonal group.

In dimension 2 these groups completely describe the hyperoctahedral group, which is the dihedral group Dih4 of order 8, and is an extension 2.V (of the 4-group by a cyclic group of order 2). In general, passing to the subquotient (derived subgroup, mod center) is the symmetry group of the projective demihypercube.

Tetrahedral symmetry in three dimensions, order 24 Sphere symmetry group td.png
Tetrahedral symmetry in three dimensions, order 24

The hyperoctahedral subgroup, Dn by dimension:

nSymmetry
group
Dn Coxeter notation Order MirrorsRelated polytopes
2 D2 (*2•)D2[2] = [ ]×[ ]CDel nodes.png42 Rectangle
3 Td (*332)D3[3,3]CDel node.pngCDel split1.pngCDel nodes.png246 tetrahedron
4±1/3[TxT].2 [1]
(T/V;T/V)* [3]
D4[31,1,1]CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png19212 16-cell
5 D5[32,1,1]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png192020 5-demicube
6 D6[33,1,1]CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png2304030 6-demicube
...n Dn[3n-3,1,1]CDel node.pngCDel 3.pngCDel node.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png2n-1n!n(n-1) demihypercube
Pyritohedral symmetry in three dimensions, order 24 Sphere symmetry group th.png
Pyritohedral symmetry in three dimensions, order 24
Octahedral symmetry in three dimensions, order 24 Sphere symmetry group o.png
Octahedral symmetry in three dimensions, order 24

The chiral hyper-octahedral symmetry, is the direct subgroup, index 2 of hyper-octahedral symmetry.

nSymmetry
group
Coxeter notation Order
2 C4 (4•)[4]+CDel node h2.pngCDel 4.pngCDel node h2.png4
3 O (432)[4,3]+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png24
41/6[O×O].2 [1]
(O/V;O/V) [4]
[4,3,3]+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png192
5 [4,3,3,3]+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png1920
6 [4,3,3,3,3]+CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png23040
...n [4,(3n-2)+]CDel node h2.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png...CDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png2n-1n!

Another notable index 2 subgroup can be called hyper-pyritohedral symmetry, by dimension: [5] These groups have n orthogonal mirrors in n-dimensions.

nSymmetry
group
Coxeter notation Order MirrorsRelated polytopes
2 D2 (*2•)[4,1+]=[2]CDel node.pngCDel 4.pngCDel node h2.png42 Rectangle
3 Th (3*2)[4,3+]CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png243 snub octahedron
4±1/3[T×T].2 [1]
(T/V;T/V)* [6]
[4,(3,3)+]CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png1924 snub 24-cell
5 [4,(3,3,3)+]CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png19205
6 [4,(3,3,3,3)+]CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png230406
...n [4,(3n-2)+]CDel node.pngCDel 4.pngCDel node h2.pngCDel 3.pngCDel node h2.png...CDel 3.pngCDel node h2.pngCDel 3.pngCDel node h2.png2n-1n!n

Homology

The group homology of the hyperoctahedral group is similar to that of the symmetric group, and exhibits stabilization, in the sense of stable homotopy theory.

H1: abelianization

The first homology group, which agrees with the abelianization, stabilizes at the Klein four-group, and is given by:

This is easily seen directly: the elements are order 2 (which is non-empty for ), and all conjugate, as are the transpositions in (which is non-empty for ), and these are two separate classes. These elements generate the group, so the only non-trivial abelianizations are to 2-groups, and either of these classes can be sent independently to as they are two separate classes. The maps are explicitly given as "the product of the signs of all the elements" (in the n copies of ), and the sign of the permutation. Multiplying these together yields a third non-trivial map (the determinant of the matrix, which sends both these classes to ), and together with the trivial map these form the 4-group.

H2: Schur multipliers

The second homology groups, known classically as the Schur multipliers, were computed in ( Ihara & Yokonuma 1965 ).

They are:

Notes

  1. 1 2 3 4 Conway & Smith 2003
  2. du Val 1964 , #47
  3. du Val 1964 , #42
  4. du Val 1964 , #27
  5. Coxeter 1999 , p. 121, Essay 5 Regular skew polyhedra
  6. du Val 1964 , #41

Related Research Articles

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

In mathematics, a generalized permutation matrix is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero entry can be any nonzero value. An example of a generalized permutation matrix is

<span class="mw-page-title-main">Weyl group</span> Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

<span class="mw-page-title-main">ADE classification</span>

In mathematics, the ADE classification is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in. The complete list of simply laced Dynkin diagrams comprises

<span class="mw-page-title-main">Cross-polytope</span> Regular polytope dual to the hypercube in any number of dimensions

In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in n-dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.

In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

<span class="mw-page-title-main">Icosahedral symmetry</span> 3D symmetry group

In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron and the rhombic triacontahedron.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group

<span class="mw-page-title-main">Uniform 8-polytope</span>

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

<span class="mw-page-title-main">Uniform 9-polytope</span> Type of geometric object

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">Demihypercube</span> Polytope constructed from alternation of an hypercube

In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as n for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n(n−1)-demicubes, and 2n(n−1)-simplex facets are formed in place of the deleted vertices.

In mathematics, the binary octahedral group, name as 2O or ⟨2,3,4⟩ is a certain nonabelian group of order 48. It is an extension of the chiral octahedral group O or (2,3,4) of order 24 by a cyclic group of order 2, and is the preimage of the octahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary octahedral group is a discrete subgroup of Spin(3) of order 48.

In mathematics, the generalized symmetric group is the wreath product of the cyclic group of order m and the symmetric group of order n.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

References