Isolator (microwave)

Last updated
Resonance absorption isolator consisting of WG16 waveguide containing two strips of ferrite (black rectangle near right edge of each broad wall), which are biased by a horseshoe permanent magnet external to the guide. Transmission direction is indicated by an arrow on the label on the right Isolator-(resonance-absorption-type)-in-WG16.jpg
Resonance absorption isolator consisting of WG16 waveguide containing two strips of ferrite (black rectangle near right edge of each broad wall), which are biased by a horseshoe permanent magnet external to the guide. Transmission direction is indicated by an arrow on the label on the right

An isolator is a two-port device that transmits microwave or radio frequency power in one direction only. The non-reciprocity observed in these devices usually comes from the interaction between the propagating wave and the material, which can be different with respect to the direction of propagation.

Contents

It is used to shield equipment on its input side, from the effects of conditions on its output side; for example, to prevent a microwave source being detuned by a mismatched load.

Non-reciprocity

An isolator is a non-reciprocal device, with a non-symmetric scattering matrix. An ideal isolator transmits all the power entering port 1 to port 2, while absorbing all the power entering port 2, so that to within a phase-factor its S-matrix is

To achieve non-reciprocity, an isolator must necessarily incorporate a non-reciprocal material. At microwave frequencies, this material is usually a ferrite which is biased by a static magnetic field [1] but can be a self-biased material. [2] The ferrite is positioned within the isolator such that the microwave signal presents it with a rotating magnetic field, with the rotation axis aligned with the direction of the static bias field. The behaviour of the ferrite depends on the sense of rotation with respect to the bias field, and hence is different for microwave signals travelling in opposite directions. Depending on the exact operating conditions, the signal travelling in one direction may either be phase-shifted, displaced from the ferrite or absorbed.

Types

Resonance isolator in rectangular waveguide topology. The forward magnetic field (solid line) is circularly polarized in the ferrite slab and FMR absorption is induced therein. The backward field (dashed) is not circularly polarized and flows normally along the guide. Resonance isolator - rectangular waveguide topology.svg
Resonance isolator in rectangular waveguide topology. The forward magnetic field (solid line) is circularly polarized in the ferrite slab and FMR absorption is induced therein. The backward field (dashed) is not circularly polarized and flows normally along the guide.
Field-displacement isolator in rectangular waveguide topology. The ferrite slab deforms the electric field so that the forward field is maximal at the border of the ferrite where a resistive sheet has been placed. This sheet decreases the intensity of the electric field. The backward field is minimal at this same place so that it experiences no loss because of the resistive sheet. Displacement isolator in rectangular waveguide topology.svg
Field-displacement isolator in rectangular waveguide topology. The ferrite slab deforms the electric field so that the forward field is maximal at the border of the ferrite where a resistive sheet has been placed. This sheet decreases the intensity of the electric field. The backward field is minimal at this same place so that it experiences no loss because of the resistive sheet.
Circulator-based isolator. The circulation mechanism induced by the ferrite in the cavity constrains the signal to flow from port 1 to port 2 and from port 2 to port 3. However, the port 3 is connected to a matched load. All the incoming signal is then absorbed and no signal can be emitted from port 3. Circulator-based isolator.svg
Circulator-based isolator. The circulation mechanism induced by the ferrite in the cavity constrains the signal to flow from port 1 to port 2 and from port 2 to port 3. However, the port 3 is connected to a matched load. All the incoming signal is then absorbed and no signal can be emitted from port 3.

Most common types of ferrite-based isolators are classified into four categories: terminated circulators, Faraday rotation isolators, field-displacement isolators, and resonance isolators. In all these kinds of devices, the observed non-reciprocity arises from the wave-material interaction which depends on the direction of propagation.

Resonance absorption

In this type the ferrite absorbs energy from the microwave signal travelling in one direction. A suitable rotating magnetic field is found in the dominant TE10 mode of rectangular waveguide. The rotating field exists away from the centre-line of the broad wall, over the full height of the guide. However, to allow heat from the absorbed power to be conducted away, the ferrite does not usually extend from one broad-wall to the other, but is limited to a shallow strip on each face. For a given bias field, resonance absorption occurs over a fairly narrow frequency band, but since in practice the bias field is not perfectly uniform throughout the ferrite, the isolator functions over a somewhat wider band.

Field displacement

This type is superficially very similar to a resonance absorption isolator, but the magnetic biasing differs, and the energy from the backward travelling signal is absorbed in a resistive film or card on one face of the ferrite block rather than within the ferrite itself.

The bias field is weaker than that necessary to cause resonance at the operating frequency, but is instead designed to give the ferrite near-zero permeability for one sense of rotation of the microwave signal field. The bias polarity is such that this special condition arises for the forward signal; the backward signal sees the ferrite as an ordinary dielectric material (with little permeability, as the ferrite is already saturated by the bias field). Consequently, for the electromagnetic field of the forward signal, the ferrite has very low characteristic wave impedance, and the field tends to be excluded from the ferrite. This results in a null of the electric field of the forward signal on the surface of the ferrite where the resistive film is placed. Conversely for the backward signal, the electric field is strong over this surface and so its energy is dissipated in driving current through the film.

In rectangular waveguide the ferrite block will typically occupy the full height from one broad-wall to the other, with the resistive film on the side facing the centre-line of the guide.

Terminated circulator

A circulator is a non-reciprocal three- or four-port device, in which power entering any port is transmitted to the next port in rotation (only). So to within a phase-factor, the scattering matrix for a three-port circulator is

A two-port isolator is obtained simply by terminating one of the three ports with a matched load, which absorbs all the power entering it. The biased ferrite is part of the circulator and causes a differential phase-shift for signals travelling in different directions. The bias field is lower than that needed for resonance absorption, and so this type of isolator does not require such a heavy permanent magnet. Because the power is absorbed in an external load, cooling is less of a problem than with a resonance absorption isolator.

Faraday rotation isolator

A last physical principle useful to design isolators is the Faraday rotation. When a linearly polarized wave propagates through ferrite having a magnetization aligned with the direction of propagation of the wave, the polarization plane will rotate along the propagation axis. This rotation may be used to create microwave devices as isolators, circulators, gyrators, etc. In rectangular waveguide topology, it also requires the implementation of circular waveguide sections which come out of the device plane.

AisladorG.JPG
An X band isolator consisting of a waveguide circulator with an external matched load on one port
AisladorC.JPG
Two isolators each consisting of a coax circulator and a matched load

See also

Related Research Articles

<span class="mw-page-title-main">Microwave</span> Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

<span class="mw-page-title-main">Circulator</span>

A circulator is a passive, non-reciprocal three- or four-port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where an external waveguide or transmission line, such as a microstrip line or a coaxial cable, connects to the device. For a three-port circulator, a signal applied to port 1 only comes out of port 2; a signal applied to port 2 only comes out of port 3; a signal applied to port 3 only comes out of port 1, and so on. An ideal three-port circulator has the following scattering matrix:

A magneto-optic effect is any one of a number of phenomena in which an electromagnetic wave propagates through a medium that has been altered by the presence of a quasistatic magnetic field. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the Faraday effect: the plane of polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto-optic material are known as the magneto-optic Kerr effect.

<span class="mw-page-title-main">Optical isolator</span> Optical component allowing the transmission of light in only one direction

An optical isolator, or optical diode, is an optical component which allows the transmission of light in only one direction. It is typically used to prevent unwanted feedback into an optical oscillator, such as a laser cavity.

<span class="mw-page-title-main">Radio wave</span> Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm ; at 30 Hz the corresponding wavelength is 10,000 kilometers. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a close, but slightly lower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

<span class="mw-page-title-main">Klystron</span> Vacuum tube used for amplifying radio waves

A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian, which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators.

The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials under the influence of magnetic fields.

<span class="mw-page-title-main">Faraday rotator</span>

A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations. Thus it is an example of circular birefringence, as is optical activity, but involves a material only having this property in the presence of a magnetic field. Circular birefringence, involving a difference in propagation between opposite circular polarizations, is distinct from linear birefringence which also transforms a wave's polarization but not through a simple rotation.

<span class="mw-page-title-main">Gunn diode</span> Form of diode

A Gunn diode, also known as a transferred electron device (TED), is a form of diode, a two-terminal semiconductor electronic component, with negative resistance, used in high-frequency electronics. It is based on the "Gunn effect" discovered in 1962 by physicist J. B. Gunn. Its largest use is in electronic oscillators to generate microwaves, in applications such as radar speed guns, microwave relay data link transmitters, and automatic door openers.

<span class="mw-page-title-main">Backward-wave oscillator</span>

A backward wave oscillator (BWO), also called carcinotron or backward wave tube, is a vacuum tube that is used to generate microwaves up to the terahertz range. Belonging to the traveling-wave tube family, it is an oscillator with a wide electronic tuning range.

Ferromagnetic resonance, or FMR, is coupling between an electromagnetic wave and the magnetization of a medium through which it passes. This coupling induces a significant loss of power of the wave. The power is absorbed by the precessing magnetization of the material and lost as heat. For this coupling to occur, the frequency of the incident wave must be equal to the precession frequency of the magnetization and the polarization of the wave must match the orientation of the magnetization.

<span class="mw-page-title-main">Waveguide (radio frequency)</span> Hollow metal pipe used to carry radio waves

In radio-frequency engineering and communications engineering, waveguide is a hollow metal pipe used to carry radio waves. This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave radio links.

<span class="mw-page-title-main">Magic tee</span>

A magic tee is a hybrid or 3 dB coupler used in microwave systems. It is an alternative to the rat-race coupler. In contrast to the rat-race, the three-dimensional structure of the magic tee makes it less readily constructed in planar technologies such as microstrip or stripline.

An optical modulator is an optical device which is used to modulate a beam of light with a perturbation device. It is a kind of transmitter to convert information to optical binary signal through optical fiber or transmission medium of optical frequency in fiber optic communication. There are several methods to manipulate this device depending on the parameter of a light beam like amplitude modulator (majority), phase modulator, polarization modulator etc. The easiest way to obtain modulation is modulation of intensity of a light by the current driving the light source. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason, light modulators are called external light modulators. According to manipulation of the properties of material modulators are divided into two groups, absorptive modulators and refractive modulators. Absorption coefficient can be manipulated by Franz-Keldysh effect, Quantum-Confined Stark Effect, excitonic absorption, or changes of free carrier concentration. Usually, if several such effects appear together, the modulator is called electro-absorptive modulator. Refractive modulators most often make use of electro-optic effect, other modulators are made with acousto-optic effect, magneto-optic effect such as Faraday and Cotton-Mouton effects. The other case of modulators is spatial light modulator (SLM) which is modified two dimensional distribution of amplitude & phase of an optical wave.

<span class="mw-page-title-main">Tunable metamaterial</span>

A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation. It encompasses developments beyond the bandwidth limitations in left-handed materials by constructing various types of metamaterials. The ongoing research in this domain includes electromagnetic materials that are very meta which mean good and has a band gap metamaterials (EBG), also known as photonic band gap (PBG), and negative refractive index material (NIM).

<span class="mw-page-title-main">Waveguide filter</span> Electronic filter that is constructed with waveguide technology

A waveguide filter is an electronic filter constructed with waveguide technology. Waveguides are hollow metal conduits inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass, while others are rejected. Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting.

Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment.

<span class="mw-page-title-main">Pulsed electron paramagnetic resonance</span>

Pulsed electron paramagnetic resonance (EPR) is an electron paramagnetic resonance technique that involves the alignment of the net magnetization vector of the electron spins in a constant magnetic field. This alignment is perturbed by applying a short oscillating field, usually a microwave pulse. One can then measure the emitted microwave signal which is created by the sample magnetization. Fourier transformation of the microwave signal yields an EPR spectrum in the frequency domain. With a vast variety of pulse sequences it is possible to gain extensive knowledge on structural and dynamical properties of paramagnetic compounds. Pulsed EPR techniques such as electron spin echo envelope modulation (ESEEM) or pulsed electron nuclear double resonance (ENDOR) can reveal the interactions of the electron spin with its surrounding nuclear spins.

<span class="mw-page-title-main">Coplanar waveguide</span> Type of planar transmission line

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits.

<span class="mw-page-title-main">Distributed-element circuit</span> Electrical circuits composed of lengths of transmission lines or other distributed components

Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult to implement.

References

  1. Pozar, David M. (2012). Microwave engineering. ISBN   978-81-265-4190-4. OCLC   884711361.
  2. Saib, A.; Darques, M.; Piraux, L.; Vanhoenacker-Janvier, D.; Huynen, I. (June 2005). "An unbiased integrated microstrip circulator based on magnetic nanowired substrate". IEEE Transactions on Microwave Theory and Techniques. 53 (6): 2043–2049. doi:10.1109/TMTT.2005.848818. ISSN   0018-9480. S2CID   14638902.

Fox, A. G.; Miller, S. E.; Weiss, M. T. (January 1955). "Behaviour and applications of ferrites in the microwave region" (PDF). Bell System Technical Journal . Bell Labs. 34 (1): 5–103. doi:10.1002/j.1538-7305.1955.tb03763.x.

Baden Fuller, A. J. (1969). Microwaves (1 ed.). Pergamon Press. ISBN   0-08-006616-X.

Baden Fuller, A. J. (1987). Ferrites at Microwave Frequencies. IEE electromagnetic waves series. Peter Peregrinus. ISBN   0-86341-064-2.